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RESUMO

Resumo da Dissertagdo apresentada ao Programa de Pés Graduacdo em Instrumentagdo,
Controle e Automacao de Processos de Minera¢do como parte dos requisitos necessarios para a

obtencdo do grau de Mestre em Ciéncias (M.Sc.)

ROBOTICA MOVEL NA MINERACAO: ESTUDOS DE CASO COM ROBOS
TERRESTRES E AEREOS EM DISPERSAO DE ETIQUETAS ELETRONICAS,
RECONSTRUCAO 3D E INSPECAO VISUAL AUTOMATIZADA

Levi Welington de Resende Filho

Abril/2021

Orientadores: Gustavo Pessin

Fernando Santos Osério

A robética movel, desde o seu surgimento, sempre foi uma drea que despertou o interesse e
atencdo de pesquisadores. Hoje, gragcas ao avanco tecnoldgico, robds mdveis estdo cada vez
mais disponiveis. Movida pela transformacao digital, a inddstria viu também a possibilidade de
utilizar robds moveis em suas instalacdoes. Dentre as dreas industriais que apresentam grande
importancia para a economia brasileira, destaca-se a mineragao. Diferentemente de outros am-
bientes, a minera¢do apresenta um universo desafiador aos robos, dificultando o seu desen-
volvimento. Este trabalho esté inserido neste contexto e € desenvolvido sobre trés estudos de
caso aplicados a mineracao: (i) a necessidade de rastrear o minério de cobre ao longo da ca-
deia de producdo, (ii) a necessidade de reconstruir ambientes confinados e (iii) a necessidade
de inspecionar dutos da cadeia de producao. Foram propostas solu¢des para cada uma dessas
necessidades: (i) desenvolvimento de hardware e software para melhorar o controle de rastrea-
bilidade de minério de cobre por meio de lancamentos de etiquetas eletronicas RFID, (ii) estudo
investigativo em fotogrametria para executd-la em espacos confinados visando a reconstru¢ao
3D do ambiente e (iii) a construcdo e avaliacdo de sistema computacional deep learning para a
identificac@o de falhas precoces na tubulacao de rejeitos da Usina do Salobo. Ao final de cada

estudo de caso, consideracdes finais sdo apresentadas demonstrando os resultados obtidos.

Palavras-chave: Robdética de campo, Robotica movel, Dispersao por drones, Reconstrugdo 3D,

Inspecdo robotizada.

Macrotema: Mina e usina; Linha de Pesquisa: Robotica Aplicada a Mineracao; Tema: Sen-

soriamento de Ativos.



ABSTRACT

Abstract of Dissertation presented to the Graduate Program on Instrumentation, Control and
Automation of Mining Process as a partial fulfillment of the requirements for the degree of
Master of Science (M.Sc.)

MINING MOBILE ROBOTICS: CASE STUDIES WITH GROUND AND AIR ROBOTS IN
ELECTRONIC TAG DISPERSION, 3D RECONSTRUCTION, AND AUTOMATED
VISUAL INSPECTION

Levi Welington de Resende Filho

April/2021

Advisors: Gustavo Pessin

Fernando Santos Osério

Mobile robotics, since its inception, has always been a focus of interest and attention of re-
searchers. Today, thanks to technological advancement, mobile robots are increasingly avail-
able. Driven by the digital transformation, the industry also saw the possibility of using mobile
robots in its facilities. Among the industrial areas that are of great importance to the Brazilian
economy, mining stands out. Unlike other environments, mining presents a challenging uni-
verse for robots, making their development difficult. This work is inserted in this context and
is developed on three case studies applied to mining: (i) the need to track copper ore along
the production chain, (ii) the need to reconstruct confined environments, and (iii) the need to
inspect pipelines in the production chain. Solutions were proposed for each of these needs:
(1) hardware and software development to improve copper ore traceability control through the
launch of RFID electronic tags, (ii) investigative study in photogrammetry to perform it in con-
fined spaces aiming at the 3D reconstruction of the environment and (iii) the construction and
evaluation of a deep learning computational system for the identification of early failures in
the tailings pipe of the Salobo Plant. At the end of each case study, final considerations are

presented demonstrating the results obtained.

Keywords: Field robotic, Mobile robots, Drone Dispersion, 3D Reconstruction, Robotic In-

spection.

Macrotheme: Mine and plant; Research Line: Robotics Applied to Mining; Theme: Asset

Sensing.
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1. INTRODUCAO

Este Capitulo apresenta o contexto no qual este trabalho esta inserido, os objetivos para
cada um dos desenvolvimentos propostos e, por fim, a estrutura e organizacdo dos capitulos

subsequentes desta dissertacao.

1.1. Contexto

O final do século XVIII foi marcado pela revolucao industrial, a qual modificou todo o
setor produtivo e iniciou a substitui¢do da mao de obra humana por maquinas. Na busca por
processos mais otimizados, a partir da década de 1960 os robds industriais ganharam destaque.
Atividades que eram consideradas repetitivas, tais como soldagem, montagem, pintura, embala-
gem, entre outras, passaram a ser realizadas por manipuladores robéticos. Os robds industriais,
como foram classificados, comparados aos humanos nestas atividades, sdo mais rapidos e mais

precisos (SHIBATA/ 2004).

A partir da década de 1990, com o desenvolvimento tecnoldgico e sua miniaturizagao,

novos modelos de robds comecaram a ficar disponiveis no mercado, criando uma nova categoria
na drea: a robdtica movel. Esta drea, apesar de ser jovem, tem atraido a atencdo e por isso é
alvo de varias pesquisas. Um robo mével € capaz de andar ao longo de um ambiente e extrair as
suas caracteristicas para usufruir de seus talentos de maneira mais efetiva (SIEGWART et al.,
2011). Além disso, atualmente, eles sdo capazes de desempenhar atividades complexas de

forma auténoma (YOUSIF er al| 2015)), por exemplo, os robds Opportunity e Spirit (Figura|[I.1)

que foram enviados a Marte.

(a) Robd Opportunity (b) Robo Spirit

Figura 1.1: Robds méveis utilizados na exploracido de Marte.
Fonte: Maimone e Matthies| (2006)).
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Além do uso na exploracao espacial, os robds moveis estao presentes no nosso dia-a-dia.
De maneira geral, eles podem ser classificados em duas subcategorias: de uso pessoal ou de uso
profissional (SHIBATA|, 2004). Robods méveis de uso pessoal sdo aqueles que sdo capazes de
desempenhar atividades rotineiras, tais como cortar a grama (Figura[I.2al), aspirar a casa, limpar

a piscina e, até mesmo, dirigir (Figura[I.2b), enquanto os robds méveis de uso profissional sdo
aqueles que sdo capazes de desempenhar atividades que podem gerar risco a saude humana, tais
como acessar e investigar espacos confinados (Figura [I.2c), desarmar bombas (Figura [1.2d),

entre outras.

(a) Robd cortador de grama (b) Carro auténomo dirigindo na cidade

(c) Drone utilizado para inspecdo de ambientes (d) Robd sendo utilizado para desarmar uma bomba

confinados

Figura 1.2: Exemplos de robds de servigo.

Fonte: (a)[Edwards| (2020), (b) [Ohsnman| (2020), (c) Rectrix Drone Services| (2020), (d) TOPSKY](2020).

Desde o inicio da dltima década, a digitalizacdao e a transformacdo digital tém sido

cada vez mais presentes na industria (VAIDYA et al., 2018). Este movimento, que promove,

principalmente, a tomada de decisOes autdonomas, interoperabilidade, agilidade, flexibilidade,

eficiéncia e redugdo de custo (PEREZ D. er al [2016), proporcionou a entrada da robética

mével, também, neste setor. Como exemplos de aplica¢des, pode-se citar o Energid (Figura[l.3a)),
que € um drone desenvolvido com um manipulador robético embarcado, que permite a realizagao
de atividades sofisticadas de inspe¢ao com destreza e velocidade (TARDELLA, 2020); o FarmWi-
se Robot (Figura [I.3b), que é um robd terrestre utilizado na agricultura, realiza a detec¢do e
corte de ervas daninhas de forma auténoma (GUIZZO), 2020); e o ARIEL (Figura [I.3c)), que é

composto por um drone e um barco autdonomos, executa a deteccdo de vazamento de 6leo em
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meios aqudticos (DE SOUZA| 2020).

(a) Drone Energid (b) FarmWise Robot (c) ARIEL

Figura 1.3: Exemplos de robds mdveis aplicados a industria.

Fonte: (a)[Tardella (2020)), (b) [Guizzo| (2020), (c)|de Souzal (2020).

Além dos exemplos citados, a robdtica mdvel pode ser aplicada em quaisquer setores
da industria, inclusive na industria de base, por exemplo na mineracdo. A mineracao, possui
forte impacto na economia brasileira, sendo que no ano de 2017 esse setor representou 4% do
Produto Interno Bruto (PIB) nacional e registrou superavit de US$ 23,4 bilhdes
DE MINAS E ENERGIA| 2018)). Atualmente no Brasil existem 207 minas em operacéo, das
quais 33% apresentam producdo superior a 1 milhdo de toneladas por ano. Dentre as empresas

neste setor, destaca-se a Vale S.A. (Vale), que apresenta grandes parcelas de representatividade

na producdo nacional com participagdo de 71,9% na extrag@o de ferro, 70,6% de participacao

na extracao de cobre, e de 14,6% de participacao na extragao de manganés (]AGENCIA NACI—|
ONAL DE MINERACAO - ANM, 2020).

Diante de sua contribui¢do para a economia e das perspectivas tecnoldgicas do mercado

atual, a Vale em 2018 iniciou a operacdo de ativos em modo autbnomo: caminhdes fora de
estradas (Figura[l.4)) e perfuratrizes, e em modo teleoperados: escavadeiras, na mina de Brucutu
- Minas Gerais. Por exemplo, os caminhdes que antes eram operados por pessoas, passaram a
ser controlados por sistemas de computadores, Sistema de Posicionamento Global (do inglés
Global Positioning System, GPS), radares e inteligéncia artificial 2020).

_—

(a) Caminhao fora de estrada autdnomo na Mina (b) Empregado da Vale monitorando
de Brutucu funcionamento do caminhao

Figura 1.4: Caminhao autonomo em operacao.

Fonte: (2020).
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Além disso, a empresa em 2014 adquiriu um robd mével para apoiar no estudo de cavi-
dades naturais, o qual foi batizado de EspeleoRobd (Figura[I.3]). Nos tltimos anos, o robd pas-
sou por diversas modifica¢des, dando ao dispositivo a habilidade de inspecionar outros espagos

confinados, tais como galerias naturais e tubulacoes.

Figura 1.5: Evolucao do EspeleoRobd.
Fonte: Adaptado de acervo ITV.

Anteriormente foram apresentados dois exemplos de aplicagcdes de robdtica movel apli-
cados a mineracgdo, contudo, esta drea ainda apresenta diversos desafios (presenca de alta umi-
dade, poeiras, variacdao da iluminacdo, diferenca de relevos, entre outros) que carecem de es-
tudos e aplicacdes robustas, tais como: desenvolvimento de mecanismos e sistemas roboticos,
sistemas de localizagdo e navegacdo para veiculos e robds moveis, sistemas autbnomos ou te-
leoperados, sistemas de aeronaves pilotadas remotamente, estratégias de controle cooperativo
para rob0s heterogé€neos (rob0s terrestres e aéreos atuando em conjunto na realizacdo de uma
tarefa complexa).

Esta dissertacdo foi desenvolvida buscando apresentar estudos e aplica¢des robustas que
visam atender a demanda da empresa do setor mineral e fomentar a sinergia entre o estudo
investigativo, o desenvolvimento tecnoldgico, a inovacdo, a produgdo e a indudstria. Mais es-
pecificamente, neste documento sdo apresentados trés estudos de caso, os quais demonstram
alinhamento com o desenvolvimento de pesquisas aplicadas ao setor de mineracdo com abor-
dagens pratico-cientificas que proporcionam aprendizado, conhecimento e contribui¢cdes em

diferentes vieses.

1.2. Objetivos

Esta dissertagdo tem como objetivo geral a proposta, o desenvolvimento e a avaliagao de
servigos roboticos para atuacao em campo. A dissertacdo € organizada e desenvolvida sobre trés
casos aplicados: (i) Dispersao de Etiquetas Eletronicas, (ii) Investigacao em Fotogrametria,
e (iii) Inspecao Automatizada de Dutos. Dessa forma, para cada aplica¢do, os objetivos es-
pecificos sdo listados a seguir.

No tema de Dispersao de Etiquetas Eletrdnicas (Capitulo [3), os objetivos especificos

Sao:
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Sao:

Propor e desenvolver um dispositivo eletromecanico que seja acoplado a um drone para

dispersao tele-controlada;
Validar o protétipo desenvolvido em ambiente representativo € em ambiente de mina;

Realizar a operacdo assistida na mina, validando a prova de conceito e detalhando as

li¢des aprendidas;
Desenvolver procedimento para execu¢do da atividade;

No tema de Investigacio em Fotogrametria (Capitulo ), os objetivos especificos sdo:

Investigar diferentes softwares para realizacao de reconstru¢ao 3D por meio de fotogra-

metria;

Propor metodologia para reconstru¢do 3D para ambientes subterraneos por fotogrametria

utilizando o software escolhido;

Realizar a reconstrucdo 3D de diferentes ambientes, sejam eles reais ou simulados, por

fotogrametria;
Comparar resultados obtidos por fotogrametria com LiDAR-SLAM e Visual-SLAM,;

Ser capaz de reproduzir e extrapolar métodos de reconstruc¢do 3D a diferentes ambientes

dentro da area de mineragao.

No tema de Inspecao Automatizada de Dutos (Capitulo [5), os objetivos especificos

Propor e desenvolver método de deep learning para identificacdo de potenciais falhas

precoces em dutos;

Comparar os resultados obtidos para diferentes modelos de redes neurais convolucionais

para o sistema proposto;
Validar resultados obtidos através de mapas de ativagdo de classe;

Avaliar consumo energético para cada rede neural convolucional em diferentes tipos de

hardware;

Identificar as juntas utilizando redes neurais convolucionais de disparo Unico.
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1.3. Organizacao do texto

Esta dissertacdo € composta por 6 capitulos. Inicialmente, € apresentado um capitulo
com o Referencial Teérico, Capitulo[2] que introduz a base teérica necessdria para as aplicagoes
dos estudos de caso desenvolvidos. Em seguida, nos Capitulos e[5sao apresentados os trés
estudos de caso. Cada um desses capitulos apresenta suas motivacoes, trabalhos relacionados,
metodologias, resultados, consideracdes finais e trabalhos futuros. No primeiro estudo de caso,
Capitulo |3} € apresentada uma inovagdo tecnoldgica, cuja principal motivacao foi auxiliar a
Mina do Salobo na solugio de um problema, enquanto os demais estudos de caso, Capitulos {4
e[5] apresentam estudos investigativos quanto a fotogrametria aplicada ambientes subterraneos
e a inspegdo automatizada. Por fim, sdo apresentadas as Considera¢des Finais, Capitulo [6]
as quais realizam o fechamento do trabalho, revisam os objetivos e os resultados obtidos no
desenvolvimento e apresentam a lista de contribuigdes.

Neste documento, sao feitas referéncias aos trabalhos publicados pelo autor durante o
periodo do mestrado. A seguir estdo listadas as publicagdes referentes a cada estudo de caso

desenvolvido.

* Dispersdo de Etiquetas Eletronicas:
— Relatorio técnico: Relatério de experimentos de campo na Mina do Salobo (RE-
SENDE FILHO et al.,[2020);

— Pedido de patente de invencdo: Dispositivo e método para lancamento de etiquetas
eletrOnicas sobre rocha desmontada a partir de um veiculo aéreo nao tripulado (RE-
SENDE FILHO et al., 2021).

* Investigacdo em Fotogrametria:

— Resumo de artigo: Investigation on Photogrammetry and LiDAR Models for Ca-
ves/Mines 3D Reconstruction (RESENDE FILHO et al.,[2019);

— Relatorio técnico: Dispositivo robdtico para inspe¢do de ambientes restritos e con-
finados (FREITAS et al., 2020a);

— Artigo de periddico: Towards semi-autonomous robotic inspection and mapping in
confined spaces with the EspeleoRobé (AZPURUA et al.,[2021).

* Inspecdo Automatizada de Dutos:

— Relatorio técnico: Inspegdo da tubulacdo de rejeitos das usinas de Salobo (MAGNO
et al.,2019);

— Artigo de conferéncia: Deep Learning for Early Damage Detection of Tailing Pipes
Joints with a Robotic Device (RESENDE FILHO et al.|,[2020).
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2. REFERENCIAL TEORICO

Este Capitulo apresenta um breve referencial tedrico relativo aos estudos de caso que sao
abordados nesta dissertacdo. Trabalhos relacionados e mais especificos sdo apresentados dentro
dos Capitulos que descrevem os estudos de caso, com o objetivo de manté-los autocontidos.
Os conceitos apresentados na Secao sao relativos as plataformas utilizadas neste trabalho,
na Secao sao relativos ao Capitulo |3] enquanto os conceitos apresentados na Secao
sdo relativos ao Capitulo 4| e, por fim, os conceitos apresentados na Secao [2.4{sdo relativos ao
Capitulo 5

2.1. Robotica movel

Um robd moével pode ser definido como um sistema mecéanico capaz de se mover em
um ambiente de forma autdnoma. Para este proposito, deve estar embarcado com (i) sensores,
que coletam informagdes a respeito do ambiente ao redor, além de determinar a sua localizagao,
(i1) atuadores que permitem que ele se mova, e (iii) um algoritmo que lhe possibilita calcular
e interpretar os dados coletados pelos sensores, e enviar comandos para os atuadores com o
objetivo de se realizar uma atividade (JAULIN, [2019).

Nas Subsecdes a seguir serdo apresentados conceitos com relagdo aos robds moveis
aéreos e terrestres, e em seguida sio apresentados as especificacdes dos dispositivos utilizados

nesse trabalho: o Inspire 1 e o EspeleoRobd.

2.1.1. Robos moveis aéreos

Os robds moveis aéreos (Figura [2.1) apresentam diversas nomenclaturas, sendo comu-
mente conhecidos como drones, Aeronave Remotamente Pilotada (do ingl€s Remotely Piloted
Aircraft, RPA), Aeronave ndo Tripulada (do inglés Unmanned Aircraft, UA), Veiculo Aéreo
nao Tripulado (do inglés Unmanned Aerial Vehicle, UAV) e Sistemas Aéreos nao Tripulados
(do inglés Unmanned Aerial Systems, UAS) (TANG e SHAO, 2015). Nas regulamentacdes bra-
sileiras, regidas pela |Agéncia Nacional de Aviacdo Civil - ANAC| (2020) e Departamento de
Controle do Espaco Aéreo - DECEA| (2020), os termos mais utilizados sdo: RPAs e UAs.

As RPAs, dentre as suas intimeras classificagdes, podem ser categorizadas em dois gran-
des grupos baseados no formato de suas asas (TANG e SHAO, 2015) e (LEE e CHOI, [2016):

* Asas fixas: sdo equipamentos similares a avides. Gragas as asas fixas, a decolagem e o

pouso sao realizados na horizontal,

* Asas rotativas: sdo equipamentos similares a helicopteros ou autogiros. A decolagem e o

pouso para estes modelos sdo realizados na vertical.
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Figura 2.1: Exemplo de drone.
Fonte: [DJI| (2020Db)).

Os drones estdo cada vez mais populares no dia-a-dia das pessoas. Nos dltimos anos,
o desenvolvimento de RPAs cresceu rapidamente, criando um mercado com drones de diver-
sos formatos, tamanhos e capacidades (COLOMINA e MOLINA, 2014). Este crescimento,
concomitante com a evolucdo da Indistria 4.0, alavancou a popularidade destes dispositivos.
Atualmente os drones destacam-se na area de sensoriamento remoto. [Tang e Shao| (2015)) in-
troduzem o termo Sensoriamento Remoto por Drones, de forma a distinguir o que pode ser
realizado por um drone daquilo que é feito com tecnologias tradicionais, tais como satélites
e avides. Dentre as vantagens do uso de drone perante aos outros métodos, pode-se destacar:
maior flexibilidade, coleta em tempo real e menor custo.

Outros exemplos de utilizagdo de drones podem ser vistos em atividades de resgaste e
sobrevivéncia (SHAHMORADI et al., 2020), planejamento e gestao urbana (BILJECKI ef al.,
2015) e monitoramentos ambientais e ecoldgicos (LEE e CHOL [2016). Também podem ser
vistos em aplicacdes em escalas industriais, como na agricultura (ELIJAH et al., [2018)), dleo e
gas (SHAHMORADI et al., 2020), mineracao (LEE e CHOI, 2016)), entre outras.

2.1.2. Robos moveis terrestres

Os robOs moveis terrestres, geralmente, possuem mecanismos de locomogao inspira-
dos na natureza, tais como rastejar, deslizar, correr, andar, entre outros. Podem, também,
se locomover a partir de rodas, método que apresenta alta eficiéncia em solos planos (SI-
EGWART et al., 2011). Além disso, os robds podem ser desenvolvidos em sistemas hibridos
de locomogdo, como por exemplo o ANYmal (Figura[2.2), que é um rob6 que possui pernas e
rodas (COXWORTH, 2020).

Neste trabalho, dentre os tipos de locomocao, sdo destacados os de pernas e os de rodas.
Os robds de pernas sdo caracterizados por uma série de pontos de contatos entre o robd e o
solo. O ponto chave da utilizacdo das pernas incluem adaptabilidade e manobrabilidade em
terrenos acidentados. Além disso, o robd € capaz de cruzar buracos, desde que ndo exceda o seu
alcance, e manipular objetos com grande habilidade. As principais desvantagens da locomocao
por pernas incluem alto consumo energético e alta complexidade mecanica: as pernas podem ter

varios graus de liberdade, devem ser capazes de sustentar o peso total do robo, além de levantar
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Figura 2.2: Exemplo de robd terrestre hibrido.

Fonte: Coxworth] (2020).

e abaixar, e, por fim, devem transmitir forcas em varias dire¢des diferentes (SIEGWART ef al.|
2011).

Os robds de rodas sao os robds mais populares na robdtica mével. Este sistema de

locomocdo apresenta alta eficiéncia, e geralmente ndo apresenta problemas de equilibrio, uma
vez que os robods sdo projetados para que as rodas sempre estejam em contato com solo. Os
maiores problemas dos problemas com rodas se concentram na tragdo, na capacidade de ma-

nobra e controle do robd que sao limitadas e/ou determinadas pelas configuracdes de rodas dos

robds (SIEGWART et al, 2011).

2.1.3. Inspire 1

A RPA Inspire 1 (DJI, Nanshan) (Figura[2.3) ¢ um quadrorotor comercial que tem como
principais caracteristicas: peso de 3 kg, autonomia de aproximadamente 18 minutos, velocidade

médxima de 22 m/s, maxima resisténcia a velocidade de vento de 10 m/s e peso maximo de

decolagem de 3,5 kg 2020a).

Figura 2.3: Drone Inspire 1.

Fonte: |Loja Drone Manial (2020).

A Figura[2.4Japresenta o diagrama com os principais componentes do Inspire 1. Além do
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GPS, este drone conta com uma Unidade de Medic¢ao Inercial (do inglés Inertial Measurement
Unit, IMU), um magnetdometro, dois sonares € uma camera monocular. Estes sensores sao

utilizados para efetuar o controle da RPA e garantir a seguranca de voo.

Hélice
Motor
LED frontal

Trem de pouso

Sensores de posicionamento
por visao

LED de status

Figura 2.4: Principais componentes do Inspire 1.
Fonte: Adaptado de DJI|(2021]).

2.1.4. EspeleoRobo

O EspeleoRobo6 (Figura ¢ uma plataforma robética de pequenas dimensdes que é
utilizada na inspecdo de espacos confinados. O robd, inicialmente, foi desenvolvido para ser uti-
lizado como uma ferramenta teleoperada na inspecao de cavernas, baseando-se no rob6 RHEX
(Boston Dynamics, Waltham) que apresenta configuracdes com seis pés. Nos dltimos anos, o
EspeleoRobd passou por diversas alteracdes e atualmente € uma plataforma modular, possui di-
ferentes sistemas de locomocgao e, além disso, € capaz de fazer missdes autbnomas (AZPURUA
et al.,2021)).

Dentre as suas principais caracteristicas destacam-se: peso de 25 kg, autonomia de apro-
ximadamente 4 h com carga util de 5 kg, comunicacdo sem fio de 900 MHz com antena dire-
cional ou rede 4 G e com fio (250 m), dimensdes de 0,28 x 0,52 x 0,7 m e protecdo a dgua e
particulados (IP67). A Figura[2.5|apresenta o diagrama com os principais componentes embar-
cados do EspeleoRobd, ndo se limitando a estes, uma vez que os sensores utilizados no robo

variam de acordo com a tarefa de interesse (plataforma modular).

24



LiDAR Ouster OS1

Xsens MTi-G-710

LEDS traseiros

Camera traseira
Antena de comunicacao

Motores

Intel NUC

LEDS frontais

Camera frontal
Baterias

Figura 2.5: Principais componentes do EspeleoRobd.
Fonte: Adaptado de|Azpurua et al.{(2021)).

2.2. Prototipagem rapida

Nas Subsecdes a seguir sdo apresentadas tecnologias que tém permitido a prototipa-
gem rapida e, consequentemente, t€m tornado possivel o desenvolvimento de aplicacdes inte-

roperaveis e flexiveis, que sdo essenciais para a robotica mével.

2.2.1. Impressoras 3D

As impressoras 3D, também conhecidas como manufatura aditiva ou prototipagem rapida,
existem ha décadas. O primeiro trabalho com impressora 3D foi feito em 1984 por Charles W.
Hull (BOGUE, 2013). Naquele momento, a tecnologia era muito cara € ndo se mostrou muito
atrativa a industria e aos consumidores.

Até a década de 2010, a tecnologia de impressdao 3D raramente era vista fora de fei-
ras e centros de desenvolvimento (LI et al.| 2016). A partir de 2010, o cendrio se mostrou
diferente e esta tecnologia atingiu uma expansao inimaginavel. A impressdo 3D foi compa-
rada a tecnologias disruptivas, como livros digitais e downloads de musica (BERMAN|, 2012).
Tal expansdo se deve ao fato da impressdo 3D apresentar um simples principio de funciona-
mento, ao desenvolvimento de diferentes tipos desta tecnologia, a facilidade de integragdo com
computador, a presenca de uma comunidade ativa e, acima de tudo, a simplicidade de tornar
um projeto realidade. Desde a sua invengdo, a impressdo 3D tem como principio de funcio-
namento um processo de manufatura aditivo, em que os produtos sdo construidos camada por

camada, por meio de uma série de sec¢Oes transversais (BERMAN, 2012). As impressoras 3D
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podem ser de diferentes tipos, dos quais destacam-se as de extrusdo de material (Figura [2.6),
fotopolimerizacdo de cuba, jateamento de material, ligacdo de material granular e laminagdo de
folha 2016). A maioria das tecnologias de impressdo 3D permitem integragdo com
software de Desenho Assistido por Computador (do inglés Computer-Aided Design, CAD) e
com outros arquivos digitais. No final do processo de desenvolvimento de um produto, o pro-
jetista simplesmente clica no botdo “imprimir”’e escolhe uma impressora aplicavel
2012). Além disso, hoje existem diversos sites com repositorios de desenhos, os quais usudrios

podem compartilhar e, até mesmo comercializar, projetos entre si.

Figura 2.6: Exemplo de impressora 3D do tipo de extrusdo de material.

Fonte: (2021).

Nao apenas para pequenas aplicagdes, a tecnologia de impressao 3D esta cada vez mais
conquistando o seu espaco nos setores manufatureiros, criando novas oportunidades para a
fabricacdo de itens, que no passado eram impossiveis de serem fabricados, e aumentando a
qualidade daqueles que ja eram produzidos (ATTARAN, 2017).

2.2.2. Microcontroladores

Microcontroladores podem ser definidos como pequenos computadores, desenvolvi-
dos em um circuito integrado, contendo o nicleo do processador, memoria e periféricos pro-
graméveis de entrada e saida. Eles sao uma excelente forma para programar e controlar eletro-
nicos. Alguns exemplos de microcontroladores sdo as placas Wiring, o PIC, o Basic Stamp, o
Arduino, Raspberry, entre outros (NUSSEY), 2013). Dentre os modelos no mercado, uma das
tendéncias no desenvolvimento de cédigo aberto é o microcontrolador Arduino (Figura[2.7) que

se destaca por ser uma plataforma de baixo custo e amplamente apoiada pela academia e pela
industria (]GONZALEZ e CALDERONL |2019|). Isso se da pelo fato do Arduino apresentar sim-

ples integracdo com o computador e ter comportamento facilmente alterado de acordo com a
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necessidade do usudrio, o que seria muito mais dificil de ser feito nos outros microcontroladores
(NUSSEY/| [2013).

Figura 2.7: Exemplo de Arduino.
Fonte: Net Computadores| (2020).

2.3. Reconstrucao 3D

As reconstrucdes 3D sao hoje uma ferramentas essenciais na anélise de estruturas, gragas
a sua capacidade de examinar desde pequenos corpos até grandes ambientes (EULITZ e REISS,
20135). Diferentemente de outras representacdes, as reconstrugcdes 3D permitem a navegacao e
extragcdo de informacdes tais como medidas ponto a ponto, volume, entre outras. Nas Subsecdes
a seguir, sdo apresentados os principais formatos de arquivos com informagdes 3D, os modelos

e os métodos utilizados na representacdo de ambientes.

2.3.1. Formatos de arquivos com informacoes 3D

Os principais formatos para a transferéncia de informacdo 3D sdo Imagem de Alcance
(do inglés Range Image), Imagens em Vermelho, Verde, Azul e Profundidade (do inglés Red,
Green, Blue, and Depth, RGB-D) e Nuvem de Pontos (do inglés Point Cloud). Segundo Besl
(1988), Imagem de Alcance € o arquivo em que cada pixel é representado num espaco 2D em

(x,y) apresenta um nivel z que representa a distancia relativa entre eles (Figura 2.8).

31 20 23 23 26 26 28 26 28 26 23 20 23 23 20 23 26 23 26 23
28 26 26 23 26 23 28 26 26 26 23 23 26 23 26 23 26 20 23 23
28 28 26 26 26 23 20 26 26 31 26 28 28 26 20 23 26 20 20 26
26 23 26 26 23 23 20 23 39 34 45 37 45 39 72 56 45 64 56 45
23 26 20 26 23 23 26 50 34 28 28 42 45 50 61 56 59 42 56 59
26 23 23 23 28 20 23 26 26 23 28 37 50 48 59 48 50 56 53 45
23 26 26 17 20 20 20 31 20 28 28 42 59 59 59 53 59 48 53 53
20 20 20 26 17 20 28 26 26 23 23 42 61 59 50 48 50 50 53 53
23 26 17 23 20 17 20 37 26 20 31 61 75 59 56 61 50 50 48 48
15 20 20 23 20 23 20 26 26 23 23 64 67 67 50 45 53 50 56 56
17 15 23 20 17 17 28 26 28 23 37 48 61 59 56 56 61 42 70 56
17 17 15 17 20 17 23 31 23 17 15 64 45 56 53 48 56 48 53 61
17 20 15 15 17 17 28 28 23 26 26 50 61 61 56 48 50 53 45 53
17 15 20 20 17 17 23 17 17 20 17 42 64 50 45 50 50 48 45 48
17 17 17 20 17 17 12 26 20 23 26 53 56 53 59 50 50 45 50 45
15 17 20 20 20 12 26 12 23 12 28 31 72 72 53 50 48 42 48 45
12 17 151512 15 09 23 20 15 17 45 70 70 72 75 70 45 64 53
151517 12 12 15 15 31 34 26 31 48 48 59 48 64 48 45 75 67
15 17 12 17 09 17 17 28 39 64 42 81 34 53 42 39 72 48 61 42
1515 15 15 12 09 06 34 48 53 28 45 28 39 31 50 50 53 50 39

Figura 2.8: Exemplo de dado no formato Imagem de Alcance.
Fonte: |Besl| (1988).
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De acordo com McGill et al.| (2017), Imagens em RGB-D sdo arquivos nos quais as
cameras sio capazes de capturar tanto a imagem colorida em Vermelho, Verde e Azul (do inglés
Red, Green, and Blue, RGB), quanto a sua respectiva profundidade (Figura

Figura 2.9: Exemplo de imagem colorida e sua respectiva profundidade.
Fonte: [Lai et al.| (2020).

Por fim, Nuvem de Pontos que € um conjunto de pontos no espaco, expresso em um

mesmo sistema de coordenadas x,y e z, que representam o formato dos objetos/ambientes (Fi-

gura [2.10).

Figura 2.10: Exemplo de dado em Nuvem de Pontos.
Fonte: [Sneha S| (2019).

2.3.2. Modelos para representacao de ambientes

Segundo |Burgard et al.| (2016), a representacdo de ambientes naturais por meio de mo-
delos geométricos, pode ser realizada com Mapas de Elevagdo (do inglés Elevation Grids),
Grades 3D (do inglés 3D Grids) e Malhas (do inglés Mesh). Mapas de Elevacdo descrevem o
terreno como uma fungéo & = f(x,y), os quais x e y sdo as coordenadas planares e & a elevacdo
correspondente. Os Mapas de Elevacao sdo representados por meio de voxels (unidade unitaria

de volume), conforme demonstrado na Figura[2.11
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Figura 2.11: Representacdo de reconstrucao 3D por meio de Mapa de Elevacao.

Fonte: [Triebel et al.| (2006).

Nas Grades 3D os dados sdo representados diretamente em 3D sem uma projeciao ou
referéncia em um plano 2D, preservando sua distribuicdo original e sem restringir a geome-
tria do ambiente (Figura 2.12)). Contudo, o uso dessa representagdo apresenta alto consumo

computacional.

Figura 2.12: Ambiente aberto representado por Grades 3D.
Fonte: Burgard ef al| (2016).

Finalmente, as Malhas sdo um conjunto de vértices, arestas e faces que definem a forma
de um objeto/ambiente poliédrico. A principio, podem representar quaisquer combinacdes de
superficie de uma forma compacta (Figura [2.13). Entretanto, na prética, esta representa¢io
apresenta dificuldades em trabalhar em ambientes muito complexos, tais como terrenos aciden-

tados.
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Figura 2.13: Representacao 3D de ambiente por meio de Malha.
Fonte: Burgard et al| (2016).

2.3.3. Métodos de reconstrucao 3D

As reconstrugdes 3D podem ser realizadas a partir de dois métodos: passivos ou ativos.
Os métodos ativos interferem ativamente com a cena/objeto reconstruido, mecanicamente ou
radiometricamente, a fim de se obter o0 mapa de profundidade de interesse. Geralmente, sdo
utilizadas tecnologias Tempo de Voo (do inglés Time of Flight, ToF) e Luz Estruturada (do
inglés Structure Light) para essa metodologia.

Tempo de Voo é um método que opera com base no mesmo principio de radares, me-
dindo o tempo que a radiagc@o emitida por um transmissor leva para percorrer uma distancia em
um meio (ZANUTTIGH et all,2016). Os sensores (Figura[2.14) mais utilizados neste método
sdo LiDAR e Cameras ToF.

(a) Puck (Velodyne, San Jose) (b) Basler Time-of-Flight (Basler, Ahrensburg)

Figura 2.14: Exemplo de sensores utilizados para leitura de Tempo de Voo.

Fonte: (a)[Velodynel (2020), (b) Basler] (2020).

A Luz Estruturada, parte do principio da triangulacdo. Sua construg¢do basica consiste

de um arranjo em que uma camera € um projetor apresentam um angulo @ entre si, € ambos

apontam para um alvo (ZANUTTIGH ez all 2016), conforme ilustrado na Figura 2.15 O
sensor ativo, responsavel pela deteccao da profundidade, pode ser um laser infravermelho, uma

luz projetada ou luz codificada por cores.
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Figura 2.15: Exemplo de arranjo para o método Luz Estruturada.
Fonte: Adaptado de|Cartola V.[(2020).

Ja os métodos passivos, sdo aqueles em que a aquisicdo de dados € realizada a partir
da aquisi¢do da cena por meio de diferentes angulos de visdo a partir de videos ou imagens.
Nessa técnicas, normalmente, sao utilizadas luzes artificiais para minimizar oclusdes na cena
de interesse. As informacdes coletadas sdo transformadas em 3D a partir da triangulacdo e cor-
respondéncia entre similares pontos nas imagens (BIANCO et al., 2013). Dentre esses métodos
destacam-se a Visao Estéreo e a Fotogrametria.

A Visao Estéreo é um metodologia composta por duas cadmeras que se enquadram
parcialmente na mesma cena. Considerando que as cameras sdo iguais, estdo calibradas e
ha sobreposi¢do das imagens, € possivel estimar as coordenadas 3D de interesse através da

triangulacdo (ZANUTTIGH et al,2016). A Figura[2.16]apresenta exemplo de cAmera estéreo.

Figura 2.16: Exemplo de camera estéreo.
Fonte: |Stereo Labs|(2020).

Ja a Fotogrametria € uma metodologia que realiza a reconstrucao 3D a partir de um
conjunto de imagens que apresentam sobreposicdes superiores a 80%. Pelo fato de utilizar
informacdes 2D (fotos), esta metodologia, comparado com os demais, apresenta maior custo
computacional. Para a reconstru¢do o fluxo basico (Figura €: extracao de caracteristicas
(LOW, 2004); correspondéncia entre as imagens (NISTER e STEWENIUS, [2006); corres-
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pondéncia entre as caracteristicas extraidas (LOW, 2004); Estrutura do Movimento (do inglés
Structure from Motion, StM) (MOULON et al., 2013)); estimativa de profundidade (HIRSCH-
MULLER, 2005)); criagao da malha (JANCOSEK e PAJDLA, 2014)); e, por fim, texturizagao
(LEVY et al.,2002).

Fotos (2D) :

Extracao de
caracteristicas

!

Correspondéncia
entre imagens

I
y

Correspondéncia

entre caracteristicas |

Estrutura do
movimento (SfM)

!

Estimativa da
profundidade

I
y

Criagdo da malha e
textura

——» Reconstru¢édo 3D

Figura 2.17: Fluxo basico da reconstru¢@o 3D por fotogrametria.
Fonte: Adaptado de AliceVision Meshroom| (2019).

2.4. Redes neurais artificiais

Redes Neurais Artificiais (do inglés Artificial Neural Networks, ANN) sdo técnicas com-
putacionais que apresentam modelo matematico inspirado na estrutura neural de organismos
inteligentes, que sdo capazes de realizar aprendizado, bem como reconhecimento de padrdes.
Nas Subsecoes a seguir, sdo apresentados os conceitos de Rede Neural Convolucional, Aprendi-
zado por Transferéncia, Mapas de Ativacdo de Classe e Rede Neural Convolucional de Disparo
Unico.

2.4.1. Rede neural convolucional

Na identificacio de padroes por imagens, a ANN normalmente utiliza um nimero muito
grande de neurdnios, dificultando seu uso priatico (AGHDAM e HERAVI, 2017; BUDUMA
e LOCASCIO, 2017). Para|Aghdam e Heravi (2017), o uso da Rede Neural Convolucional
(do inglés Convolutional Neural Network, CNN) € a solucdo para reduzir esse alto nimero de
neurdnios e parametros necessarios para a classificacao de imagens. Além disso, uma CNN ¢é
uma rede multicamada projetada especificamente para reconhecer formas bidimensionais com
um alto grau de conversao, dimensionamento, inclinacdo e outras formas de distor¢ao (HAY-
KIN;, 2009). A Figura apresenta um esquema de CNN simples para extrair informacoes e
classificar uma imagem com base na rede LeNet, introduzido por LeCun ez al.| (1998]). Também

pela Figura [2.18] nota-se que é possivel dividir as CNNs em dois grupos: nas (i) camadas de
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convolucdo, que s@o compostas pelas convolugdes e subamostragens, e nas (ii) camadas de

classificacdo que sdo compostas pelas conexdes completas.

C1: mapas de C3

Entrada caracteristicas
32x32

C5
F6: camada

| =
C lucd Conexao completa
Convolugées Subamostragem ONVOIUGOES g hamostragem

Figura 2.18: Esquema ilustrativo de uma rede neural convolucional.

Fonte: Adaptado de|LeCun et al.|(1998)).

As camadas de convolug@o sdo responsdveis por duas caracteristicas: aprendizado de
parametros invariantes na translacdo, o que as permite ter grande poder de generalizacdo com
poucas amostras, e aprendizado de hierarquias espacias de padrdes, o que possibilita que as
camadas convolucionais extraiam mais padrdes a cada camada, permitindo que as redes apren-
dam, com efici€ncia, conceitos visuais cada vez mais complexos e abstratos. Enquanto isso,
as camadas de classificagdo sdo responsaveis pelo aprendizado de padrdes globais, ou seja,

elas consideram toda a informacao recebida, como por exemplo, todos os pixels em uma ima-

gem (CHOLLET, 2018).

2.4.2. Aprendizado por transferéncia

Para[Zhang (2011)), a medida que novas tarefas complexas de classificagdo surgem, mui-
tas vezes precisamos de um grande nimero de amostras para treinamento a fim de obter um bom
desempenho de classificacdo. Para as pessoas, quanto mais uma nova tarefa estiver relacionada
a uma experiéncia anterior, mais facilmente ela serd dominada. De forma a imitar esse tipo de
aprendizado, a técnica Aprendizado por Transferéncia (do inglés Transfer Learning, TL) repre-
senta o progresso no sentido de tornar o Aprendizado de Mdquina (do inglés Machine Learning,
ML) tdo eficiente quanto o aprendizado humano (TORREY e SHAVLIK] 2009).

O TL € um método de ML no qual um modelo desenvolvido para uma tarefa é reuti-
lizado como ponto de partida para um modelo em uma segunda tarefa (BROWNLEE, 2017).
Para [Goodfellow et al| (2016), TL refere-se a situagdo em que aquilo que foi aprendido em

um ambiente é explorado para melhorar a generalizagdo em outro ambiente. A Figura [2.19]
apresenta trés motivos pelos quais a TL pode melhorar o aprendizado: desempenho superior no
inicio do aprendizado, uma inclinacdo mais acentuada na curva de aprendizado e desempenho
assintético superior.

Outra técnica que pode ser utilizada para melhorar o desempenho da ANN é conhecida
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Figura 2.19: Comparacdo dos desempenhos de uma rede neural com e sem aprendizado por
transferéncia.
Fonte: Adaptado de [Torrey e Shavlik| (2009).

como Aumento de Conjunto de Dados (do inglés Dataset Augmentation, DA). Esta metodolo-
gia € utilizada quando o conjunto de dados € restrito e, por isso, adicionam-se dados sintéticos
ao teste de treinamento. Essa abordagem ¢é eficaz, principalmente, para o problema de reconhe-
cimento de objetos (GOODFELLOW et al.,|2016).

2.4.3. Mapas de ativacao de classe

A maioria das CNNs € treinada com rétulos a nivel da imagem, de forma que as camadas
convolucionais aprendem representacdes hierarquicas para tomar suas decisdes de classificagdo
(BUDUMA e LOCASCIO, 2017). No entanto, trabalhos recentes, como |Bazzani et al.| (2016)),
mostram que as CNNs t€m a capacidade de localizar objetos nas imagens sem informagdes
prévias.

Para aprender recursos profundos para localizacao discriminativa, Zhou et al.| (2016)
propuseram uma técnica para gerar Mapas de Ativacdo de Classe (do inglés Class Activation
Mapping, CAM) utilizando o Agrupamento Médio Global (do inglés Global Average Pooling,
GAP) na CNN (Figura[2.20). O CAM permite a visualizagdo das pontuacdes e pesos de classe
previstas em qualquer imagem, destacando as partes discriminativas dos objetos detectadas pelo
modelo da CNN. O CAM da classe c¢ € fornecido por:

Mc(x,y) =Y wifi(x,y) 2.1)
k

os quais: w{ é o peso correspondente a classe ¢ para a unidade k, e fi(x,y) que representa a
ativacdo da unidade k na tltima camada convolucional no local espacial (x,y). Esses valores sdo

obtidos projetando de volta os pesos da camada de saida nos mapas de recursos convolucionais.
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Figura 2.20: Exemplo de uma saida por mapas de ativagdo de classe.

Fonte: Adaptado de (2016).

2.4.4. Rede neural convolucional de disparo tnico

Para sistemas de detec¢do de objetos em tempo real, a rede You Only Look Once (YOLO)
€ considerada o estado da arte por ser mais rapida e precisa quando comparado aos outros siste-
mas (REDMON e FARHADI, [2020). A YOLO é uma Rede Neural Convolucional de Disparo
Unico (do inglés Single Shot Detector, SSD) baseada em uma tnica rede neural que divide a
imagem em regides e prevé caixas delimitadoras e probabilidades para cada regido
(Figura[2.21). A deteccdo de objetos é reformulada como um tnico problema de
regressdo diretamente dos pixels da imagem para as coordenadas da caixa delimitadora e as

probabilidades da classe (REDMON et al., 2016).

ol 1 | L
|
Bl s ] &

S % S malhas na entrada

Deteccdo final

Mapa de probabilidade de classe

Figura 2.21: Predi¢do com YOLO.
Fonte: Adaptado de[Redmon et al| (2016).
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A YOLOV3, que é uma das versdes mais recentes do sistema, possui 53 camadas con-
volucionais, sendo capaz de prever em trés dimensdes: caixa delimitadora, objetividade e pre-
visdes de classe. A rede consegue obter informacdes mais significativas a partir da reutilizagao
dos mapas de informagdes de iteragdes anteriores, aplicando a elas blocos residuais de convo-
lucdo. Esta operagdo € realizada de maneira rdpida e precisa (REDMON e FARHADI, 2020;
REDMON et al., 2016).

Para medir a eficdcia da deteccdo na YOLO, a Precisao Média Ponderada (do inglés
mean Average Precision, mAP) € usada como indicador, o qual representa um valor médio na
curva de precisdo (do inglés recall) calculada sobre o conjunto analisado (KHARCHENKO
e CHYRKA| 2018).

2.5. Consideracoes sobre os Referenciais Tedricos

Neste Capitulo foram introduzidos conceitos tedricos a respeito dos estudos de caso que
sao abordados neste trabalho. A Secao apresentou o conceito de robotica movel, introduziu
as definicdes de robds aéreos e terrestres, e descreveu os dispositivos utilizados neste traba-
lho. A Secao apresentou tecnologias que auxiliam no desenvolvimento de prototipagem
rapida: impressoras 3D e microcontroladores, que em conjunto foram a base do desenvolvi-
mento do estudo de caso de Dispersdo de Etiquetas Eletronicas. A Se¢do [2.3]abordou os con-
ceitos basicos para o entendimento de reconstrucdes 3D. Foram explicados os formatos de ar-
quivos com informagdes 3D, os modelos para representacao de ambientes e, por fim, os métodos
para efetuar uma reconstru¢do. Esses conceitos sdo importantes no entendimento do estudo de
caso da Investigacdo em Fotogrametria. A Secdo[2.4|apresentou 0s conceitos necessarios para o
entendimento do sistema desenvolvido no estudo de caso de Inspecdo Automatizada de Dutos.
Foram abordados os conceitos de redes neurais artificiais, redes neurais convolucionais, apren-
dizado por transferéncia, mapas de ativacdo de classe e redes neurais convolucionais de disparo

dnico.
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3. ROBOS AEREOS PARA DISPERSAO DE ETIQUETAS
ELETRONICAS DE RASTREAMENTO DE MINERIO

Este Capitulo apresenta uma proposta de desenvolvimento e avaliacio em campo de
um sistema de hardware e software para melhorar o controle de rastreabilidade do minério de
cobre na Mina do Salobo (Maraba - PA) através do lancamento de etiquetas eletronicas de
Identificacdo por Radiofrequéncia (do inglés Radio Frequency Identification, RFID). Sdo des-
critos, também, os resultados apresentados no relatorio técnico: Relatério de experimentos de
campo na Mina do Salobo (RESENDE FILHO et al., 2020) e no pedido de patente de invencao:
Dispositivo e método para langcamento de etiquetas eletronicas sobre rocha desmontada a par-
tir de um veiculo aéreo ndo tripulado (RESENDE FILHO et al.| 2021)), frutos de trabalhos
em colaboracdo com os coautores indicados nos documentos citados. Este Capitulo, diferen-
temente dos demais capitulos dessa dissertagc@o, possui viés de inovacdo tecnoldgica, portanto,
em seu decorrer sdo descritos o prototipo desenvolvido e a metodologia de operacionalizagdo
da atividade.

Salobo € o segundo projeto de cobre desenvolvido pela Vale no Brasil. A mina estd
localizada em Marabd, sudeste paraense, € entrou em operacdo em novembro de 2012. O
empreendimento tem capacidade nominal estimada de 100 mil toneladas anuais de cobre em
concentrado (VALE, 2020).

Em termos gerais, o fluxo de produgao (Figura[3.1)) de cobre em Salobo pode ser descrito
em: o minério é lavrado e transportado por caminhdes fora-de-estrada até a britagem, onde tem
o seu tamanho reduzido. Em seguida, esse minério chega ao roller press, um equipamento
formado por dois rolos que giram em sentidos opostos, fragmentando o produto gracas a a¢ao
de rotagdo e pressao do equipamento. Logo apds, o minério passa por moinhos € uma bateria
de ciclones até chegar as areas de flotacdo e filtragem, etapa final do processo que resulta em
um concentrado que varia de 36% a 40% de cobre (VALE, 2020). Dentre esses processos,
um dos mais importantes da cadeia de produciao do cobre € a flotacdo, devido ao seu impacto
direto na concentracdo de saida. Segundo os relatérios gerenciais de produgdo da planta, o
minério de cobre em Salobo € extraido com um teor médio de 0,8% e, ao final do processo do
beneficiamento, seu teor aumenta entre 45 e 50 vezes.

Para garantir que o processo de flotacao atinja o teor adequado, € crucial que se conheca
a composi¢ao quimica do minério de entrada, assim como € importante que se faca a esco-
lha adequada dos reagentes do processo. Quaisquer variagdes inesperadas podem impactar na
eficiéncia do beneficiamento, resultando em um concentrado com teor inferior ao esperado.
Ressalta-se, ainda, que o minério de cobre extraido em Salobo contém grande presenca de
substancias deletérias, contaminantes presentes no sulfeto, e estas, por sua vez, representam um
risco no processo de flotacao.

Visando minimizar esse risco de processo, foi proposto pelo Departamento de Operagdes

Cobre Norte o rastreamento do fluxo de massa de cada poligono alimentado no britador, de
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12 Etapa: extracdo e cominuicdo. Teor de Cu médio 0,8%
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Figura 3.1: Fluxo de producdo de Salobo.

Fonte: O autor.

forma a permitir a antecipag¢do de ajustes na flotacdo antes da entrada do minério no processo,
garantindo que o produto seja concentrado no teor desejado. Para o rastreamento, foi proposta
a utilizacdo de etiquetas eletronicas RFIDs Dienamics (Metso, Helsinque) apresentadas na Fi-
gura[3.2] Nas etiquetas sdo carregadas um cédigo identificador, o qual contém as relagdes de

composi¢des quimicas para cada regiao dentro do poligono.

Figura 3.2: Exemplo das etiquetas eletronicas Dienamics.

Fonte: (2020).

Inicialmente, as etiquetas RFID eram colocadas nas regides de interesse antes mesmo
da detonacdo. Contudo, observou-se que grande parte delas, cerca de 75 a 80%, era destruida
no momento da explosdo. Em seguida, foi proposta a colocagdo das etiquetas pos detonagdo
de forma manual, com um funciondrio se deslocando na regido do detonado e deixando os
dispositivos manualmente. Esta dltima atividade foi suspensa apds serem detectados riscos de
acidentes.

Neste contexto, viu-se a oportunidade de realizar esta atividade com o auxilio de RPA.
Uma RPA pode sobrevoar a regido do detonado e langar as etiquetas sem expor funciondrios.
Portanto, este trabalho consiste em desenvolver um dispositivo para armazenamento das etique-

tas eletronicas, controlado remotamente, € que seja anexo a uma RPA, substituindo a atividade
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que hoje é manual. Além de desenvolver o dispositivo, espera-se deste trabalho definir a me-
todologia de operacdo da RPA, garantindo que esta atividade seja realizada com seguranga e

eficiéncia.

3.1. Trabalhos relacionados

Segundo [Tang e Shao| (2015), a disponibilidade de RPAs com multiplos tamanhos, for-
matos e aplicacOes aumentou significativamente nas ultimas décadas, assim como seu uso se
popularizou para civis. As RPAs t€m, principalmente, substituido aplica¢des de sensoriamento
remoto que no passado eram feitas por satélites e pequenos avides, tais como: pesquisas em
florestas, mapeamento de lacunas dossel, fotogrametrias, rastreamento de queimadas e desma-
tamento.

Nas dreas de ecologia e agricultura, consideradas uma das precursoras na utilizacao
de RPAs, atividades mais complexas t€ém sido desenvolvidas. Por exemplo, |Freitas et al.
(2020b) apresentam metodologia que utilizam RPAs como uma plataforma de apoio ao con-
trole bioldgico de pragas. Neste caso, o RPA é responsavel por fazer uma varredura em dreas de
diversos formatos, langando cdpsulas com inimigos naturais em pontos estratégicos. O uso do
RPA proporcionou maior eficiéncia no controle de pragas e economia na utiliza¢ao das capsulas.

Existem estudos com a aplicagao de RPAs também no setor da mineracdo. [Lee e Choi
(2016) apresentam o conjunto de aplicagdes desenvolvidas subdividindo-as em pesquisas de
mineragdo, operagdo, perfuracdo e detonagdo, seguranca, construcdo e outras, demonstrando
que as RPAs estdo se tornando cada vez mais utilizadas também nesse ramo. Shahmoradi et al.
(2020) apresentam uma classificagcdo para as aplicagdes de RPAs, subdividindo-as em trés gran-
des dreas: minas a céu aberto, minas subterraneas e minas abandonadas. Em seguida, os autores
apresentam as RPAs e sensores embarcados mais adequados para cada tipo de operacdo, bem
como os desafios associados a operagao na mineragdo, tais como poeira, umidade, luminosi-
dade, entre outros.

Nascimento ef al.| (2017) apresentam um exemplo de RPA aplicado a inspec¢ao de trans-
portadores de correia. Gragas a extensao dos transportadores de correia e o grande impacto que
eles tém na cadeia produtiva do minério, os autores propuseram realizar a inspe¢do de forma au-
tomatizada, embarcando alguns sensores em uma RPA que, por sua vez, voaria sobre a correia
para monitord-la e encontrar defeitos.

Azpurua et al. (2019) apresentam um desenvolvimento aplicado que utiliza RPA para
criar mapas digitais de elevacao magnética, com o objetivo de detectar corpos metdlicos soterra-
dos, ou até mesmo para investigacao mineral. Os mapas sdo obtidos a partir de voos autdnomos
e cooperativos entre diferentes dispositivos. A metodologia proposta em comparacdo com
métodos tradicionais (feitos em aeronaves tripuladas) é mais barata e menos perigosa.

Neste trabalho, € proposto o desenvolvimento de um dispositivo para armazenamento de

etiquetas eletronicas RFID que seja acoplado a uma RPA capaz sobrevoar os materiais detona-
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dos e de lan¢é-las em locais especificos. A realizacdo desta atividade garante maior estabilidade
do processo de flotacdo da Usina do Salobo, bem como a eliminac¢io de uma atividade com risco

de acidentes.

3.2. Desenvolvimento do protétipo

O desenvolvimento do protétipo pode ser dividido em duas partes: criagdo da estrutura
mecénica do lancador de etiquetas eletrnicas e a implementacio da eletronica neste. E im-
portante ressaltar que o protdtipo foi projetado para ser uma prova de conceito. A Figura [3.3]
apresenta visdo geral da estrutura proposta. Nas SubsecOes a seguir sdo apresentados mais

informacdes a respeito dos componentes utilizados e das etapas de desenvolvimento.

Eletronica Mecanica

RFID Dienamics

Bateria

i Anexo a :

e e =

Figura 3.3: Visao geral do protétipo desenvolvido.
Fonte: O autor.

3.2.1. Estrutura mecanica

A estrutura mecanica foi desenvolvida nos laboratérios do Instituto Tecnoldgico Vale
(ITV). Os requisitos de projeto para esta etapa foram: ter a capacidade de voar com 10 etiquetas
eletrOnicas e ser o mais leve possivel para ser embarcada em um drone.

Como as etiquetas eletronicas apresentam formato de um disco, optou-se por desenvol-
ver um reservatorio com formato de um cilindro, pois este formato permite que as etiquetas
sejam empilhadas. Na parte inferior do cilindro foi instalada uma junta rotativa, que ao ser mo-

vimentada possibilita o lancamento de uma etiqueta por vez. Além disso, foi desenvolvida uma
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pega para acoplar este cilindro com as etiquetas eletronicas ao drone. A Figura [3.4] apresenta
as visoes isométricas da estrutura. No Apéndice A - Figura [AT] sdo expostas todas visdes e

dimensOdes da estrutura mecanica.

Figura 3.4: Projeto do langador de etiquetas eletronicas.
Fonte: Adaptado de acervo ITV.

Ap6s finalizado o projeto, a pega foi impressa em ndilon por uma impressora 3D e
acoplada ao Inspire 1, RPA descrita na Subsegdo[2.1.3]e apresentada na Figura[2.3] Este drone
foi selecionado devido a sua capacidade de voar com cargas externas e por ser o mais robusto
dentre os disponiveis no ITV. A Figura[3.5demonstra o lan¢ador de etiquetas acoplado a parte

traseira do Inspire 1, bem como, indica os locais de entrada e saida das etiquetas.

Entrada das
etiquetas RF

Figura 3.5: Lancador de etiquetas acoplado a traseira do Inspire 1.

Fonte: O autor.

3.2.2. Desenvolvimento e implementacao da eletronica

A implementacdo da eletrOnica tem como objetivo promover a movimentagdo da parte

inferior do lancador de etiquetas, permitindo que estas sejam disparadas sempre que necessario.
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Como forma de estabelecer a prova de conceito para o desenvolvimento, priorizou-se a aplicacao
de um acionamento simples. Neste mddulo eletronico foram utilizados uma placa Arduino
UNO R3 (Arduino, Somerville) e um servo motor, modelo 9g SG90 (TowerPro, Ponte Vedra),
ambos alimentados por uma bateria portatil, que fornece 5 V de tensdo e 1 A de corrente. A Fi-
gura[3.6alapresenta diagrama elétrico do protdtipo e a Figura[3.6bapresenta o médulo eletrdnico

acoplado ao drone.
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(b) Médulo eletronico acoplado ao drone

Figura 3.6: Implementacao eletronica do dispersor de etiquetas eletronicas.
Fonte: O autor.

O movimento do lancador, a principio, foi programado para ser repetido a cada 20 segun-

dos, tempo considerado suficiente para que o drone se desloque entre as posi¢des de interesse.
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3.3. Validacoes do dispositivo

Esta Secdo apresenta os procedimentos realizados durante os testes e validagdes do dis-

positivo lancador de etiquetas.

3.3.1. Validacoes em ambiente representativo

Inicialmente, foram realizados testes em um ambiente representativo para analisar o
comportamento do drone, tanto em voos manuais, como em voos automatizados, apds embarcar
0 protdtipo com os seus itens.

Primeiramente, voou-se o drone em manual, a fim de analisar a sua estabilidade estatica
e dindmica, isto €, foi verificado se o Inspire 1 conseguiria se manter parado quando esti-
vesse pairando e se sua manobrabilidade se manteria ao realizar movimentos no ar. Para esta
validacdo, os voos foram realizados em Ouro Preto em um campo aberto. A Figura apre-
senta local de voo e destaque amarelo no drone durante voo. A RPA ndo apresentou dificuldades

para voar com o carregamento.

1) s

Figura 3.7: Validacdo em ambiente representativo.
Fonte: O autor.

Em seguida, voos automatizados em modo waypoint foram realizados. Nesta modali-
dade, o drone voa sobre uma area parando em alguns pontos-chaves, os quais foram escolhidos
de forma a simular um poligono de detonag¢do. A programacio da rota foi feita através do soft-
ware Litchiﬂ Estes testes também foram bem sucedidos, validando a operagdo do drone na
mina.

Com o sucesso dos voos manuais e automatizados no ambiente representativo foi possivel
obter 5 no Nivel de Maturidade Tecnoldgica (do inglé€s Technology Readiness Level, TRL) pro-
posto pela Empresa Brasileira de Pesquisa e Inovagdo Industrial (EMBRAPHﬂ

"https://flylitchi.com/
“https://embrapii.org.br/wp-content/images/2019/05/0705 Orientacao_Operacional 02-
19.pdf
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3.3.2. Validacoes em ambiente de mina

A validagdo em ambiente de mina foi realizada na Mina do Salobo. No primeiro mo-
mento, seguiu-se a mesma metodologia dos testes realizados previamente com a execugdo de
voos manuais e em seguida voos automatizados em modo waypoint, programados pelo software
Litchi.

Devido a grande diferenca entre os ambiente e aos riscos da operacdo em ambiente
de mina, as validacoes na Mina do Salobo foram dividas em duas etapas: i) revalida¢ao do

dispositivo lancador de etiquetas em voo sobre drea aberta e ii) voo sobre materiais detonados.

3.3.2.1. Revalidacao do dispositivo lancador de etiquetas

A revalidacio em drea aberta foi realizada para garantir que tudo estaria funcionando
conforme os testes e validagdes anteriores. Para a execucao desta atividade, seguiu-se a mesma
metodologia dos testes anteriores: voos manuais seguidos de voos automatizados em modo
waypoint.

No voo manual (Figura [3.8) o drone ndo apresentou nenhum problema com relacdo
a sua estabilidade dinamica, permitindo a execu¢do do voo automatizado. Ao iniciar 0 voo
programado, observou-se uma variagdo entre as coordenadas do GPS fornecido pela equipe de
topografia da mina com as coordenadas do GPS do drone. Essa diferenga é explicada pelo fato
dos sistemas de coordenadas utilizados serem diferentes, enquanto a mina utiliza o sistema de
GPS com Posicionamento Cinemético em Tempo Real (do inglés Real Time Kinematic, RTK),
o drone utiliza 0 GPS convencional. Como os sistemas RTK s3o mais precisos, precisao na

ordem de centimetros, eles foram adotados como referéncia.

e

Figura 3.8: Revalidacao do dispositivo lancador de etiquetas em campo aberto. Caixa amarela
apresentando foco no drone em voo.
Fonte: O autor.

Portanto, para dar sequéncia aos testes, foi necessario analisar a diferenga entre os siste-

mas de coordenadas do GPS da mina e da RPA. Para tal, foram comparadas coordenadas entre
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os dois sistemas, conforme pode ser verificado na Tabela[3.1]

Tabela 3.1: Diferencga de posicao entre os sistemas de coordenadas da mina e do drone.

Ponto Drone RTK Diferenca
medido Latitude Longitude  Latitude Longitude Latitude Longitude
[m] [m] [m] [m] [m] [m]
1 551.953  9.360.704 552.007,432 9.360.735,578 54,432 31,578
2 551.956  9.360.705 552.010,647 9.360.735,890 54,647 30,890
3 551.959  9.360.705 552.013,436 9.360.736,162 54,436 31,162
4 551.963  9.360.706  552.017,626 9.360.736,595 54,626 30,595
5 551.967 9.360.707 552.021,786 9.360.737,001 54,786 30,001
6 551.971  9.360.708  552.026,000 9.360.737,412 55,000 29,412
7 551.975 9.360.707  552.030,058 9.360.737,848 55,058 30,848

Fonte: O autor.

A partir dos valores da Tabela [3.1] nota-se um padrdo no erro entre os sistemas de
coordenadas. Os valores obtidos para a diferenca tanto da latitude como da longitude podem ser
caracterizados como erros sistematicos, uma vez que estes dados apresentam baixa dispersao.
Para atuar na correcdo do erro, calculou-se os valores médios da diferenca para a latitude e
longitude, que foram, respectivamente, 54,712 +0,249 m e 30,641 £0,727 m. Na sequéncia,
os valores médios das diferencas foram somados para cada par de coordenadas da RPA, a fim
de minimizar o impacto do erro com o GPS RTK.

Em seguida, foi realizado um teste em campo aberto para analisar as correcoes efetuadas.
No teste observou-se que o erro de posicionamento do GPS da RPA com relacao as coordenadas
do GPS RTK reduziu consideravelmente, atingindo valores médios inferiores a 1 m de raio,
validando o voo automatizado na mina. Ainda neste teste, avaliou-se a drea de dispersdao que
a etiqueta eletrOnica atingia ao ser lancada, variando-se a altura. Foram testadas as alturas de
5, 10 e 15 m e observou-se, para todas alturas, que o raio de dispersdo foi inferior a 50 cm.
Segundo a equipe técnica responsavel pela mineralogia da Mina do Salobo, o minério de cobre
apresenta caracteristicas semelhantes em um raio de até 2 m e, portanto, um raio de dispersao
apresentado nas alturas analisadas atendem as necessidades para o rastreio do minério. Apos
estas constatacoes, a revalidacao foi considerada como concluida, habilitando a RPA para a

execugdo de voos sobre material detonado.

3.3.2.2. Voo sobre material detonado

A realizacdo do voo sobre materiais detonados € a etapa mais importante neste pro-
cesso, pois ela € responsavel pela validagc@o desta prova de conceito e também pela definicao de
parametros de operacionalizacao.

Para a criac@o da rota de voo, foi realizada uma visita as pilhas de materiais detonados
(Figura[3.94). Durante a visita, observou-se que o pico do material detonado atinge, no maximo,

a altura de 15 m, portanto, por questdes de seguranca adotou-se voar 10 m acima do material
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detonado, ou seja, a 25 m de altura. Para cobrir toda a drea do poligono (aproximadamente
2500 m?) e garantir a rastreabilidade do minério, a distancia dos waypoints foi configurada para
20 m. Por fim, a velocidade de voo foi ajustada para 3 m/s de forma a manter a estabilidade
dindmica da RPA. Considerando a distancia entre os pontos-chaves e a velocidade configurada,
a RPA pode executar a rota em tempos inferiores a 4 minutos. Em seguida, o plano de voo

(Figura[3.9) foi configurado considerando estes parametros.

e

£2 otk

(a) Pilha de material recém detonado (b) Plano de voo para o teste

Figura 3.9: Visita a drea da mina e criacao de rota.

Fonte: O autor.

Antes da realizagdao do voo automatizado, um voo em modo manual foi realizado para
se analisar o comportamento do drone dentro da mina. Observou-se neste teste que o mag-
netdmetro do drone estava instavel devido a grande interferéncia eletromagnética do minério de
cobre, que € um material ferromagnético.

Tendo ciéncia desta condi¢ao, considerou-se realizar o voo em modo automatico, quando
a medida do magnetometro estabilizasse. Porém, caso algum distdrbio, tal como instabilidade
durante o voo, perda de rota ou intermiténcia do sinal de comunicagdo fosse detectado, a RPA
teria o seu modo de voo alterado para manual e os testes seriam abortados.

Sendo assim, a rota foi transferida a RPA. Apesar das interferéncias eletromagnéticas,
o voo automatizado (Figura [3.10) foi realizado com sucesso. A atividade foi repetida mais trés
vezes para garantir robustez e validar os padroes estipulados. Uma vez que a atividade obteve
éxito em sua realizacdo, o protétipo desenvolvido atingiu obteve nivel 7 na escala TRL ao atuar

em ambientes operacionais.

3.4. Consideracoes sobre a Dispersao de Etiquetas Eletronicas

A partir da necessidade de manter o processo de flotacdo estavel, foi observado que a
realizacdo da rastreabilidade da composicao do minério desde o processo de desmonte poderia
ter papel determinante. Tal atividade j4 havia passado por duas metodologias diferentes, uma
que perdia as etiquetas no desmonte e outra que gerava condicdes inseguras aos funcionérios.

Neste contexto, foi sugerida a realizacdo do lancamento das etiquetas via RPA. O de-

senvolvimento foi realizado em duas etapas: i) criagdo do protdtipo e testes em ambiente repre-
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Figura 3.10: Voo automatizado sobre material detonado. Caixa amarela apresentando foco no
drone em voo.
Fonte: O autor.

sentativo e ii) validagdo em édrea, na Mina do Salobo, bem como a defini¢do de parametros para
operacionalizacdo. As sequéncias de testes permitiram a realizacdo da prova de conceito: foi
possivel validar a execucao desta atividade por RPA com dispositivo desenvolvido e, também,
foi feita a definicdo de parametros de trabalho (altura de 25 m, distancia dos waypoints de 20 m
e velocidade de 3 m/s).

Por fim, com os resultados obtidos foi possivel atingir o nivel 7 da escala TRL e além
disso foi possivel solicitar um pedido de patente de invencdo para o protétipo e metodologia

desenvolvidos neste trabalho.

3.5. Trabalhos futuros

Como trabalhos futuros, sdo sugeridos:

* Embarcar outros sensores no protétipo desenvolvido como acelerdmetros, giroscopios ou
IMU para automatizar o gatilho do dispersor de etiquetas eletronicas por meio de um

movimento pré-programado sempre que a RPA estiver na posi¢do de interesse.

» Utilizacdo de modelos de RPA com GPS RTK, pois assim € possivel eliminar o offset de
coordenadas realizado no planejamento da rota e, caso o magnetometro apresente algum
defeito ou ruido, a RPA pode manter seu referencial no GPS com precisdo de posiciona-

mento na ordem de centimetros.

* Integracdo do Kit de Desenvolvimento de Software (do inglés Software Development Kit,

SDK) da DJI. Assim, o gatilho do dispositivo dispersor de etiquetas deve ser realizado
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de forma diferente e a rota pode ser feita de forma manual. Com a integracdo do SDK
pode-se configurar um botao do controle da RPA para efetuar o gatilho do servo motor, de
forma que, sempre que o botao for pressionado, uma etiqueta deva ser lancada. Ainda na
configuracao deste botdo, deve-se salvar as coordenadas do GPS da RPA sempre que ele
for pressionado, garantindo a rastreabilidade do local. Aconselha-se a utilizacdo de uma
RPA que possua GPS RTK para minimizar o erro de posi¢ao entre os sistemas de coorde-
nadas. Em termos operacionais, a execucdo desta atividade promove mais flexibilidade e
apresenta uma redu¢@o no tempo em comparagdo com a metodologia demonstrada ante-
riormente, pois as distancias entre os pontos para o langcamento de etiquetas nao precisam

ser fixas e nem sequer em fungdo do tempo.
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4. INVESTIGACAO EM FOTOGRAMETRIA PARA A
RECONSTRUCAO 3D DE AMBIENTES NA MINERACAO

Este Capitulo apresenta a investigacdo desenvolvida no método da fotogrametria para
a execucdo de reconstru¢do 3D em ambientes hostis, tais como cavernas, galerias e espagos
confinados aplicados a mineragdo. Sao descritos, também, os resultados apresentados no re-
sumo: [Investigation on Photogrammetry and LiDAR Models for Caves/Mines 3D Recons-
truction (RESENDE FILHO et al, 2019), no relatério técnico: Dispositivo robdtico para
inspegdo de ambientes restritos e confinados (FREITAS et al, 20204) e no artigo de periodo:
Towards semi-autonomous robotic inspection and mapping in confined spaces with the Espeleo-
Robo (]AZP(JRUA et al.L |2()21[), frutos de trabalhos em colaborag¢do com os coautores indicados

nos documentos citados.

Devido a necessidade de adequar as normas ambientais de Legislacdo de Prote¢do ao
Patrimonio Cultural Nacional e Ambiental por meio do Decret{l n°® 99.556 de 01/10/1990,
a Portarieﬂ do Instituto Brasileiro do Meio Ambiente (IBAMA) n° 887/90 de 15/06/1990, as
resolucdes do Conselho Nacional do Meio Ambiente (CONAMA) e a necessidade de buscar
maior eficiéncia no processo de extracio, as mineradoras estdo procurando determinar se um
local pode ser explorado ou nao utilizando as técnicas de espeleologia. Entende-se espeleologia
como a ciéncia que realiza estudos das cavidades naturais quanto a sua origem e evolugdo, ao
meio fisico que elas representam, ao seu ecossistema atual ou passado e aos meios e técnicas

que sdo préprias do seu estudo (MONTEIRO, 2011)).
Contudo, a realizacdo do estudo de espeleologia em cavernas e dutos nem sempre é

uma tarefa facil, deixando o responsdvel pela atividade exposto a riscos ergondmicos, fisicos,

bioldgicos e até quimicos (gases), conforme pode ser observado na Figura 4.1}

(a) Espeledlogo em ambiente de dificil acesso (b) Caverna com a presenca de morcegos

Figura 4.1: Ambientes tipicos para a realizacao da espeleologia.

Fonte: (a)[Figueiroa (2004), (b) [Costal (2012).

"http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/D99556.htm
Thttps://www.ibama.gov.br/component/legislacao/?view=1legislacaoklegislacao=94232
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Nos dltimos anos, gragas aos avangos tecnoldgicos, uma alternativa que tem sido ado-
tada para realizacdo de tarefas que podem ser nocivas as pessoas, € fazé-la com a aplicacao de
robos mdveis. Robds moveis sao dispositivos teleoperados, semi ou completamente autobnomos,
desenvolvidos para atividades especificas em que a mobilidade € necessaria (COTA,2019)). Se-
guindo essa tendéncia, a Vale, em 2014, adquiriu seu primeiro robé moével para realizar espe-
leologia, o EspeleoRobd, que foi descrito na Subsegdo [2.1.4] e apresentado nas Figuras [I.5] e
[2.3] Nao restrito apenas a espeleologia, este robd é também utilizado em inspecdes em espagos

confinados, conforme pode ser verificado na Figura[4.2]

ey

(a) Inspecdo de tubulagdo da barragem de dgua da (b) Inspecao em moinho de bolas na Usina
Mina do Fazendao Conceicdo 2

Figura 4.2: EspeleoRobd em trabalhos de campo.
Fonte: Acervo ITV.

Para que a espeleologia do local de interesse seja realizada, é necessario, primeira-
mente, que o ambiente seja modelado, de forma a obter a sua reconstrucdo 3D. O estudo e
a reconstrugdo 3D de superficies e objetos, por sua vez, podem ser realizados utilizando dife-
rentes tipos de sensores, cada um com um método especifico.

Neste contexto, surge a necessidade de se investigar uma metodologia para se realizar
a reconstru¢do 3D de um ambiente hostil, como cavernas e minas subterraneas, utilizando as

técnicas de fotogrametria a partir do EspeleoRobo ou até mesmo outras plataformas moéveis.

4.1. Trabalhos relacionados

Thrun et al.| (2004)) apresentam o GroundHog, um robd utilizado para a exploracdo e

mapeamento de minas abandonadas de forma auténoma. O robd, que pesa 680 kg, é equipado
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com computador embarcado, LiDAR, sensores a gas e de afundamento e cameras. Os autores
apresentam as técnicas e os desafios para realizar o mapeamento e localiza¢io simultaneamente.

L1 et al.| (2020) apresentam o desenvolvimento do CUMT-B, um robd utilizado para
aplicagdes de resgaste em minas de carvao na China. Este rob6 apresenta cameras, sensores de
gases, microfones e alto falante, que o permitem analisar o ambiente € comunicar com pessoas,
caso necessario. Além disso, o CUMT-B pode-se deslocar até 7 km, a uma velocidade méxima
de 1,3 m/s e com inclinacdo méxima de 32°.

Nao restrito apenas a rob0s terrestres, |[Freire e Cota (2017) apresentam alternativas para
acessar e obter informacdes dentro de minas subterraneas utilizando RPAs. Nesta producdo, os
autores demonstram as operagdes com um drone e com um baldo a gis e afirmam ser possivel
manusear os equipamentos mesmo sem o uso de GPS, desde que eles estejam em visada direta
e haja iluminacao.

Mascarich et al. (2018)) demonstram uma aplicac¢ao utilizando uma RPA equipada com
uma Unidade Multi Modal de Mapeamento (do inglés Multi-Modal Mapping Unit), que consiste
de dois leds ultra claros, uma unidade inercial de medida, um par estéreo de caAmeras € um sensor
de profundidade. Com este sistema, os autores mostram que € possivel fazer missdes autbnomas
e mapeamentos de ambientes fechados.

Nesse contexto, a Agéncia de Projetos de Pesquisa Avancada de Defesa (do inglés
Defense Advanced Research Projects Agency, DARPA) propds o DARPA Subterranean ou
“SubT” Challenge, que busca novas abordagens para mapear, navegar e pesquisar ambientes
subterraneos e de dificil acesso, uma vez que trabalhar nesses locais sempre foi considerado uma
atividade desafiadora, tanto para aplicacdes militares, como para civis. Variando-se a comple-
xidade do ambiente, diferentes tipos de perigos e dificuldades podem estar presentes (DARPA,
2020).

Dessa forma, o objetivo deste trabalho € investigar um método de fotogrametria para a
realizacdo de reconstru¢do 3D em ambientes subterraneos e com pouca iluminagao, definindo
uma metodologia que apresente resultados satisfatérios, que permitam extrair informacoes e
dar suporte na tomada de decisoes. Além disso, deseja-se comparar a fotogrametria com outros
métodos ativos, LIDAR-SLAM e Visual-SLAM, a fim de validar o qudo precisos foram os

resultados obtidos por ela.

4.2. Metodologia

Esta Secdo apresenta os procedimentos executados para a defini¢do da metodologia uti-

lizada na fotogrametria para os ambientes definidos pelo escopo deste trabalho.
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4.2.1. Analise de software para realizacao da fotogrametria

A investigacdo na realizacdo da reconstru¢do 3D a partir da fotogrametria iniciou-se
pela definicao de um software. Neste aspecto, foram selecionados cinco softwares que fossem
open source, para iniciar os trabalhos. A Tabelad.T)apresenta os softwares selecionados para a

andlise, bem como algumas de suas caracteristicas.

Tabela 4.1: Lista de softwares selecionados para andlise de fotogrametria e algumas de suas

caracteristicas.
Software Versao Nuvem de  Nuvem Superficie Textura
pontos densa
OpenSfM v0.2.0 Sim Sim Nao Nao
AliceVision - Meshroom 2019.2.0 Sim Sim Sim Sim
COLMAP 3.6-dev.2 Sim Sim Sim Nio
Mesh Reconstruction Software 1.0 Nao Nao Sim Nao
Meshlab 20190129-beta Nio Nio Sim Sim

Fonte: O autor.

Em seguida, para cada um deles, foram realizadas trés reconstrucdes 3D de ambientes
internos e estruturados com 30, 40 e 50 fotos. Nessas reconstru¢des, comparou-se 0 tempo
necessario para o processamento e também a sua qualidade. A qualidade, nesse momento, foi
analisada de forma qualitativa: avaliou-se a representatividade do ambiente e a presenca de
falhas na reconstrugao.

As fotos utilizadas neste teste foram obtidas através de uma camera GoPro 5 Hero (Go-
Pro, San Mateo) e as reconstru¢des foram realizadas em um computador equipado com proces-
sador Xeon (R) W-2123 (Intel, Santa Clara), com 64GB de RAM e com placa de video TITAN
Xp/PCIe/SSE2 (NVIDIA, Santa Clara).

Da lista citada na Tabela[d.1] para os softwares Mesh Reconstruction Software e Mesh-
lab, ndo foi possivel obter reconstru¢des 3D diretamente. Para os demais, as Figuras 4.3] e [4.4]
apresentam os resultados obtidos com 30, 40 e 50 fotos. E importante ressaltar que as reconstrucdes

foram executadas utilizando os parametros padrao de cada software.

(a) Resultado do software OpenSfM (b) Resultado do software AliceVision -
Meshroom

Figura 4.3: Fotogrametrias realizadas com 30 fotos.

Fonte: O autor.
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(a) Resultado do software (b) Resultado do software (c) Resultado do software
OpenSfM AliceVision - Meshroom COLMAP

Figura 4.4: Fotogrametrias realizadas com 40 e 50 fotos. A primeira linha apresenta os
resultados com 40 fotos e a segunda com 50 fotos.
Fonte: O autor.

Note que na Figura 4.3 ndo ¢ apresentado o resultado obtido pelo COLMAP, uma vez
que o software néo convergiu para uma solu¢do. A Tabela[d.2apresenta os tempos aproximados

para as reconstrugdes 3D obtidas.

Tabela 4.2: Tempos aproximados nas reconstrucoes 3D.

Tempo aproximado de execucao [min]

Software
30 fotos 40 fotos 50 fotos
OpenSfM 4 5 17
AliceVision - Meshroom 14 21 18
COLMAP - 55 74

Fonte: O autor.

Analisando-se os resultados obtidos, observa-se que o software OpenSfM apresenta os
melhores resultados, uma vez que é o mais rapido. Ja analisando as Figuras 4.3 e d.4] pode-se
dizer que, qualitativamente, os resultados obtidos pelo software AliceVision - Meshroom sao
melhores, uma vez que conseguem representar melhor o ambiente e apresentam menos bura-
cos/falhas que os demais. Como um dos objetivos deste trabalho € a avaliacdo de ambientes,
considerou-se mais importante a qualidade em detrimento do tempo. Portanto, o software Ali-

ceVision - Meshroom foi selecionado para dar continuidade nesta investigacao.
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4.2.2. Fluxo de reconstrucao 3D no software escolhido

Uma vez definido o software para a realizagdao da fotogrametria, analisou-se como a
reconstrugdo € realizada nele. O AliceVision - Meshroom, € um framework desenvolvido para
realizar reconstruc¢des 3D e rastreamento de cameras, € composto por algoritmos de visdo com-
putacional estado-da-arte que ja foram exaustivamente testados/analisados e que podem ser
extrapolados. Este software € resultado de uma colaboracao entre a academia e a inddstria para
fornecer algoritmos com qualidade e robustez para as mais diversas aplicacoes (ALICEVISION|,
2021). O AliceVision - Meshroom €é um software de facil utilizagdo e apresenta uma interface
amigdvel.

Ao executar o software, o fluxo bdsico da fotogrametria € exibido no campo Graph Edi-
tor (consulte Apéndice B - Figura[BI)). Neste fluxo, as etapas do processo de reconstru¢do sdo
carregadas e dispostas como entradas/saidas. Cada bloco € responsavel pela execucido de uma
atividade e apresenta configuracdes que, se ajustadas da maneira adequada, podem melhorar
os resultados da fotogrametria. Também € possivel adicionar, excluir e reordenar os blocos de
forma a alterar a reconstru¢cdo 3D. Abaixo € apresentada breve descri¢cao de cada um dos blocos
padrao (ALICEVISION, 2021):

* Cameralnit: responsavel por extrair os metadados das imagens. O objetivo deste bloco é

obter as informacdes intrinsecas da camera utilizada;

» FeatureExtraction: responsavel por identificar grupos de pixels que s@o invariantes no

tempo, também conhecidos como features, a medida que a camera é deslocada;

» ImageMatching: responsavel por selecionar pares de imagens correspondentes, de forma

a encontrar as imagens que se enquadram nas mesmas cenas;

» FeatureMatching: responsdvel por executar a correspondéncia de todos features entre os

pares de imagens candidatas;

» StructureFromMotion: responsavel por analisar as correspondéncias dos features para
entender a relacdo geométrica por trds de todas observagdes 2D e inferir a estrutura rigida

em 3D com a pose;

* PrepareDenseScene: responsavel por exportar imagens nao distorcidas, para que o mapa

de profundidade e texturizag¢ao sejam calculados em imagens sem distor¢ao;

* DepthMap: responsavel por estimar o valor de profundidade para cada pixel que foi esti-

mado no StructureFromMotion,

* DepthMapkFilter: responsavel por filtrar os valores de profundidade do mapa de profun-

didade que ndo sdo coerentes;
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* Meshing: responsdvel por criar uma representacdo geométrica densa da superficie da

cena;

* MeshingFiltering: responsavel por aplicar um filtro laplaciano para remover os defeitos

locais do Meshing;

 Texturing: responsavel por calcular a texturizagc@o na representacdo geométrica.

4.2.3. Proposta de fluxo de reconstrucao 3D

Como o objetivo deste trabalho € realizar a fotogrametria em ambientes subterraneos e
com pouca iluminacdo, foram propostas trés modificacdes no fluxo padrao de reconstru¢iao do
AliceVision - Meshroom para minimizar as limitagdes impostas pelos locais em questao.

A primeira alteracdo no fluxo de reconstrucdo 3D foi a inclus@o de um bloco Structu-
reFromMotion, de forma que o fluxo apresentasse dois blocos StructureFromMotion em série.
Além disso, no primeiro bloco o parametro minlnputTrackLength foi alterado para 4, enquanto
no segundo se manteve o padrio, que é 2. Essas alteracdes melhoram a robustez da selegao/re-
constru¢do do par inicial de imagens e sdo uteis quando se trabalha com um maior volume de
imagens.

A segunda alterag@o foi no bloco FeatureMatching. Neste bloco, foi ativada a opgao
Guided Matching. Esta op¢ao habilita um segundo estagio no procedimento de correspondéncia
dos features, o que minimiza a rejei¢ao precoce e, consequentemente, melhora o nimero das
correspondéncias, em particular para estruturas repetitivas.

E a dltima alteracdo realizada foi a inclusdo do recurso Augment Reconstruction. Esta
operacao permite a inclusdo de diferentes imagens ao fluxo padrdo, de maneira adicional, e
¢ adequada para andlise de cenas mais complexas. O fluxo de operacdes, apds adicionar o
recurso Augment Reconstruction, é ligeiramente alterado e o bloco ImageMatchingMultiSfM,
que permite a fusdo dos grupos em uma unica reconstru¢do € adicionado automaticamente.

No Apéndice B - Figura[B2|é demonstrado o fluxo de reconstrugio 3D, apds a realizagdo

das alteracdes acima citadas.

4.2.4. Comparacao dos fluxos de reconstrucao 3D

Para validar o fluxo de reconstru¢do 3D proposto na Subsecdo anterior € compara-lo
com o fluxo padrdo do AliceVision - Meshroom, Subsecao [4.2.2] foram realizadas fotograme-
trias seguindo os dois métodos. As reconstrucdes foram feitas em dois cendrios distintos, sendo
um simulado e outro real. As comparacdes dos resultados obtidos foram analisadas qualitati-
vamente, observando-se a representatividade do ambiente e a presenca de falhas e quantitativa-
mente através do tempo decorrido.

O primeiro cendrio analisado foi a caverna subterrinea do DARPA Subterranearﬂ Este

3“cave_02” acessado em https://github.com/osrf/subt
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ambiente tem obstaculos, terreno irregular e geometria realista de cavernas subterraneas (Fi-
gura[4.5). Todos os experimentos foram realizados utilizando a versdo virtual do EspeleoRobd
dentro do simulador CoppeliaSinﬂ executado com o Sistema Operacional de Robds (do inglés
Robot Operating System, ROS) na versao Kinetic e Ubuntu 16.04.

Figura 4.5: Cenario experimental no simulador CoppeliaSim.

Fonte: O autor.

Ja o segundo cendrio foi a mina de ouro subterranea conhecida como Mina du Veloso,
localizada em Ouro Preto - MG, Brasil (coordenadas: 20°22'34.9” sul, 43°30'57.7" oeste). Na
Figura [4.6) pode-se observar o EspeleoRobd dentro deste local. A Mina du Veloso é caracte-
rizada por possuir um corredor estreito, de aproximadamente 200 metros, com varios niveis e
terreno acidentado.

Figura 4.6: Cendrio experimental na Mina du Veloso.
Fonte: O autor.

Para o cenario da caverna subterranea do DARPA Subterranean, o EspeleoRobd foi

montado com uma camera RGB-D, um LiDAR e uma IMU. J4 para o cendrio da Mina du

“http://www.coppeliarobotics.com
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Veloso, ele foi montado com a cimera RealSense D4351 (Intel, Santa Clara), o LiDAR OS 1
(Ouster, Sao Francisco), a IMU MTI-G-710 (Xsens, Enschede) e um mddulo de led de 100W

(StratusLEDS, Seatle). Os dados coletados foram armazenados utilizando o ROS.

4.2.5. Comparacao com outros métodos de reconstrucao 3D

Como forma de analisar o qudo preciso foram os resultados obtidos pela fotogrametria,
realizou-se uma comparacdo dela com outras duas metodologias de reconstru¢cdo 3D: o LiDAR-
SLAM através da técnica do LeGO-LOAMP|e o Visual-SLAM através da técnica RTAB-MAH
Estas técnicas, que sdo realizadas a partir de sensores ativos, sdo aplicadas em atividades de
Localizacdo e Mapeamento Simultaneos (do inglés Simultaneous Localization and Mapping,
SLAM).

A comparacado entre as trés metodologias foi feita a partir de suas respectivas nuvens de
pontos. ApOs realizar as reconstrugdes 3D dos ambientes, foram comparados os erros ponto a
ponto, para cada um dos métodos, com o ground truth, que € considerado como a referéncia
para reconstrucdo e que pode ser traduzido para o portugués como “verdade fundamental”. As
comparacOes foram realizadas nos dois cendrios ja apresentados neste trabalho. Sendo assim,
para o cendrio da caverna do DARPA Subterranean, como o ambiente é simulado, a propria
caverna foi selecionada como ground truth. Agora, para o cendrio da Mina du Veloso, uma
referéncia foi determinado a partir dos resultados obtidos pela simulagdo: aquele método que
apresentou o menor erro, considerando toda a distribui¢ao dos dados, foi o selecionado. Desta
forma, as outras duas metodologias foram comparadas com a referéncia definida.

Nestas andlises, também foi considerado o tempo de processamento, a fim de se conhe-

cer melhor as aplicacdes e limitacdes de cada método.

4.3. Resultados e discussoes

Esta Secdo apresenta os resultados obtidos para cada um dos testes propostos anterior-

mente.

4.3.1. Reconstrucoes 3D por fotogrametrias

Utilizando os dados previamente gravados pelo ROS para cada um dos cendrios, as
reconstrugdes sucederam-se de forma offline. As imagens utilizadas nas fotogrametrias foram
extraidas das informacdes gravadas pelas cameras RGB-D, as quais foram usadas imagens RGB
com resolugdo de 640 x 480 pixels. Para executar as reconstruc¢des foi utilizado um computador
equipado com uma CPU 15-9300H (Intel, Santa Clara), 16GB de RAM e placa de video RTX
1050 (NVIDIA, Santa Clara).

Shttps://github.com/RobustFieldAutonomyLab/LeGO-LOAM
http://introlab.github.io/rtabmap/
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Para o cendrio do DARPA Subterranean, foram extraidas 365 imagens, considerando
um trecho da caverna. Aplicando-se o fluxo padrdo de reconstrucdo 3D, que € direto, todas
as imagens foram adicionadas a ele e a fotogrametria foi realizada. Apds o processamento,
obteve-se uma reconstru¢do 3D do ambiente com 399.946 vértices (Figura4.7a). O tempo de
reconstrugdo foi de aproximadamente 1 hora e 17 minutos. Em seguida, fora aplicado o fluxo de
reconstrugdo proposto na Subsecdo[d.2.3] Apesar de utilizar as mesmas 365 imagens, a inclusdo
delas foi realizada de forma diferente. Nesta metodologia, trés grupos foram criados seguindo
a divisdo: no primeiro utilizou-se 105 imagens, enquanto que no segundo e terceiro foram
utilizadas 130 em cada um. As 105 imagens utilizadas no primeiro grupo foram selecionadas
de forma a permitir identificar todo o trajeto percorrido pelo EspeleoRobd, enquanto que, nos
demais grupos, as imagens foram utilizadas para fornecer informacdes adicionais. Ao final,
obteve-se uma reconstru¢do 3D do ambiente com 106.332 vértices (Figura[d.7b). O tempo de

reconstrucao foi de aproximadamente 1 hora e 45 minutos.

(a) Resultado da fotogrametria seguindo fluxo (b) Resultado da fotogrametria seguindo fluxo
padrdo AliceVision - Meshroom proposto no trabalho

Figura 4.7: Fotogrametria aplicada a caverna do DARPA Subterranean.
Fonte: O autor.

Utilizando-se o fluxo padrao do AliceVision - Meshroom, notou-se que o software, ape-
sar de convergir a um resultado, ndo conseguiu criar uma malha que se correlacionasse ao
ambiente analisado. Tal fato pode ser explicado pela dificuldade que essa metodologia apre-
sentou para identificar um SfM que fosse coerente com a rota realizada pelo EspeleoRob6 na
simulacao. Em contrapartida, no outro método, as alteracdes realizadas fortaleceram a defini¢ao
do SfM: foram utilizados dois blocos StructureFromMotion em série com parametros diferentes
e, além disso, a op¢cao Guided Matching fora habilitada, permitindo melhora na correspondéncia
de features. O resultado dessas operagdes foi uma defini¢do robusta do SfM. E uma vez que o
SfM foi bem definido, obteve-se €xito ao adicionar novas informagdes a reconstrucao através
do recurso Augment Reconstruction. Por isso, analisando-se a Figura[d.7] pode-se dizer, quali-
tativamente, que a reconstrucao 3D utilizando o segundo método foi melhor que a primeira.

Com relag@o ao tempo de processamento pode-se observar que as alteragdes realizadas

no fluxo proposto aumentaram o tempo de processamento em 28 minutos, 0 que representa um
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acréscimo de aproximadamente 27% no tempo para a obtengdo do resultado. Esse aumento
pode ser explicado pelo fato do fluxo proposto possuir trés blocos de DepthMap, conforme
demonstrado na Figura[B2] nos Apéndices B. Este bloco que é responsével por estimar o valor
de profundidade de cada pixel da reconstru¢do, geralmente, consome 70% do tempo de uma
fotogrametria. Neste caso, 0 aumento do tempo se limitou a 28 minutos porque as imagens no
fluxo proposto foram incluidas em grupos menores do que no fluxo padrio.

Para o cenario da Mina du Veloso foram extraidas 333 imagens de um trecho do corredor.
Assim como na caverna do DARPA Subterranean, para a metodologia padrao do AliceVision
- Meshroom, todas as imagens foram adicionadas diretamente ao fluxo e a fotogrametria foi
realizada. Apds o processamento, obteve-se uma reconstrucdo 3D do ambiente com 63.624
vértices (Figura .8a). O tempo de reconstrugdo foi de aproximadamente 1 hora e 6 minutos.
Na mesma linha de raciocinio anterior, para o outro fluxo de reconstru¢do 3D, as imagens foram
divididas em trés grupos. O primeiro grupo ficou com 133 imagens, enquanto que o segundo
e terceiro grupos ficaram com 100 imagens cada um. Ao final, obteve-se uma reconstru¢iao 3D
do ambienteﬂ com 139.326 vértices (Figura. O tempo de reconstrucao foi de aproximada-

mente 1 hora e 28 minutos.

(a) Resultado da fotogrametria seguindo fluxo (b) Resultado da fotogrametria seguindo fluxo
padrdo AliceVision - Meshroom proposto no trabalho

Figura 4.8: Fotogrametria aplicada a Mina du Veloso.
Fonte: O autor.

Conforme apresentado na Figura [4.8] nota-se que ambas reconstrugdes conseguiram
representar o ambiente de maneira realista e com alta qualidade. Contudo, pode-se observar
também que o trecho reconstruido pelo fluxo padrdo foi menor e apresentou mais falhas em
comparacdo com o outro fluxo. Neste caso em especifico, ambas reconstru¢des definiram bem
o SfM, mas a segunda conseguiu detalhar melhor o ambiente, o que pode ser explicado pela
op¢ao Guided Matching que foi ativada e ao uso do recurso Augment Reconstruction. Portanto,
considera-se que a segunda metodologia apresentou um resultado qualitativamente melhor.

Assim como na simulacdo, observa-se que o fluxo proposto demorou mais tempo para

obter a reconstru¢cdo do que o fluxo padrio, apresentando um aumento de 22 minutos, o que

"https://skfb.1y/6SLSV
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representa um acréscimo de 33% no tempo.

Neste cendrio foi possivel observar duas particularidades para a realizacao da fotograme-
tria que ainda nao haviam sido percebidas. Primeiramente, notou-se que para melhor defini¢ao
do SfM, quanto menos o EspeleoRob0 rotacionasse em torno do seu eixo, mais fécil era a
extracdo da trajetoria percorrida por ele. Como o robd se deslocou a uma baixa velocidade,
inferior a 1 m/s, e a camera gravou a uma taxa de 15 quadros/segundo, notou-se que haviam
muitas imagens com cenas repetidas e borradas quando ele fazia os movimentos de rotacdo. A
inclusdo dessas imagens no fluxo de reconstrucao 3D, quando processadas pelo software, provo-
cava um erro na estimativa da pose em questdo afetava as seguintes. Mesmo que essas imagens
fossem filtradas ou retiradas do banco de imagens, notou-se que havia impacto no restante do
processamento. Consequentemente, para se maximar a definicdo do SfM, é aconselhavel que o
rob0 evite rotacdes no proprio €ixo.

A segunda observacao realizada durante os procedimentos foi em relacdo ao campo de
visdo da camera utilizada. Notou-se que nas regides mais proximas da camera, isto €, o chdo e
alturas de até 1,0 m, a reconstru¢do 3D apresentou menos buracos em comparagdo com alturas
superiores e ao teto. Consultando as especificacdes técnicas da camera, € possivel verificar que
seu campo de visdo na vertical € de 42,5°, o que representa uma abertura relativamente pequena.
Sendo assim, para se potencializar a reconstru¢do 3D e evitar a presenca indesejdvel de buracos

causados pelo campo de visdo, sugere-se a utilizacdo de cameras com maior abertura vertical.

4.3.2. Comparacao de métodos de reconstrucao 3D

Para a comparacao, foram selecionados dados de uma mesma base de informacdes.
Na fotogrametria foram utilizadas imagens RGB gravadas pelas cameras RGB-D. No LiDAR-
SLAM, as nuvens de pontos foram coletadas pelos LiDARs. Por fim, no Visual-SLAM, foram
utilizadas imagens RGB-D gravadas pelas cameras RGB-D.

A fotogrametria, nesta comparacao, foi realizada considerando o fluxo de reconstrucao
proposto na Subsecao[d.2.3] cujos resultados na Subsec¢ao[d.3.Tjdemonstraram melhor desempe-
nho comparado com o fluxo padrao. Portanto, para simplificar a nomenclatura, nesta Subse¢ao
o fluxo proposto é apresentado simplesmente como fotogrametria. De maneira anédloga, as
técnicas LeGO-LOAM e RTAB-MAP, sdo identificadas, respectivamente, por suas metodolo-
gias: LIDAR-SLAM e Visual-SLAM.

4.3.2.1. Caverna do DARPA Subterranean

Foram realizadas as reconstru¢des 3D para cada um dos métodos para uma secdo da
caverna. A Figura 4.9 apresenta a comparagdo das nuvens de pontos geradas, na qual a pri-
meira linha representa as nuvens de pontos obtidas por cada metodologia, a segunda linha a
comparacao entre as nuvens e o ground truth (regido cinza da imagem), e a terceira linha o

histograma dos erros.
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Figura 4.9: Andlise de erro das nuvens de pontos aplicadas aos trés métodos de reconstrugao
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3D para a caverna do DARPA Subterranean.

A Tabela[d.3] apresenta quantos pontos foram representados por cada nuvem de pontos,

e os erros maximos em 20 (distribui¢do de 95% dos pontos), 30 (distribui¢do de 99,7% dos

pontos) e em toda amostra.

Fonte: |Azpurua et al.| (2021).

)

Erro Acumulado (%

Tabela 4.3: Analise das nuvens de pontos para as reconstru¢des 3D realizadas na caverna do

DARPA Subterranean.

Método de ~ Numero de pontos Erro maximo Erro maximo Erro maximo
reconstrucao da nuvem em 20 [m] em 30 [m] [m]
Fotogrametria 79.404 0,054 0,332 1,85

LiDAR-SLAM 31.239 0,115 0,258 0,33
Visual-SLAM 383.862 0,128 0,480 0,80

Analisando a Tabela [4.3] pode-se observar que as nuvens de pontos para cada método
apresentam dimensdes diferentes, sendo que a nuvem de pontos do LiDAR-SLLAM foi a mais
esparsa e a do Visual-SLAM a mais densa. Ainda na Tabela [4.3] observa-se que o menor erro
maximo em 20 foi obtido pela fotogrametria seguido do LiDAR-SLAM, enquanto em 30 o
LiDAR-SLAM obteve o melhor resultado seguido da fotogrametria. Quando se analisa toda a
amostra de dados, nota-se que a fotogrametria teve o maior erro maximo e o LiDAR-SLAM

os menores resultados. Apesar da fotogrametria apresentar 0 maior erro maximo, este método

Fonte: |Azpurua et al.| (2021).
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€ 0 que converge mais rapidamente quando comparado aos demais, conforme demonstrado no
histograma de erros, na terceira linha da Figura[4.9]

Com relagdo ao tempo de processamento, a reconstrucao realizada pela fotogrametria
foi feita utilizando 405, imagens de tamanho 640 x 480 pixels, e levou 1 hora e 10 minutos em
um computador equipado com CPU 17-10875H (Intel, Santa Clara), 32GB de RAM e placa de
video RTX 2070 (NVIDIA, Santa Clara). O método LiDAR-SLAM, que € um método online,
levou 1239 + 226 ms para efetuar a varredura do ambiente e atualizar a reconstrugdo. Ja o
método Visual-SLAM, que também € online, levou 56 &= 12 ms por quadro e 486 &= 123 ms por

quadro-chave para atualizar a reconstrucao.

4.3.2.2. Mina du Veloso

Para a reconstru¢do da Mina du Veloso, o método LiDAR-SLAM foi selecionado como
referéncia pelo fato de ter obtido 0 menor erro mdximo em toda amostra na andlise das nuvens
de pontos apresentadas na Tabela 4.3] Portanto, as nuvens de pontos da fotogrametria e do
Visual-SLAM foram comparadas a ela. A Figura[4.10] apresenta a andlise do erro das nuvens
de pontos para este cendrio, na qual a primeira linha representa a nuvem de pontos obtidas para
cada método, a segunda linha a sobreposi¢do da nuvem de pontos com a referéncia e a terceira

o histograma de erros.

- . i
s Histograma do Erro da Fotogrametria s Histograma do Erro do Visual-SLAM
=30 100 . =30 100 .
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(a) Fotogrametria (b) Visual-SLAM

Figura 4.10: Andlise de erro das nuvens de pontos obtidas pela fotogrametria e Visual-SLAM
da Mina du Veloso, utilizando LiDAR-SLAM como referéncia.
Fonte: |Azpirua et al.| (2021).

62



A Tabela [#.4] apresenta quantos pontos foram representados por cada nuvem de pontos,
e os erros maximos em 20 (distribui¢ao de 95% dos pontos), 30 (distribui¢do de 99,7% dos

pontos) e em toda amostra.

Tabela 4.4: Andlise das nuvens de pontos para as reconstrucdes 3D realizadas na Mina du
Veloso.

Método de  Numero de pontos Erro maximo Erro maximo Erro maximo

reconstrucao da nuvem em 20 [m] em 30 [m] [m]
Fotogrametria 154.881 0,290 0,500 2,06
Visual-SLAM 1.235.708 1,276 1,896 2,56

Fonte: |Azptrua ef al.|(2021).

A Tabela[4.4|demonstra novamente que as dimensdes das nuvens de pontos foram dife-
rentes, sendo que a nuvem de pontos produzida pelo Visual-SLAM foi a mais densa, de novo.
Observa-se também pela Tabela |4.4| que a fotogrametria apresentou menores erros em relacdao
ao Visual-SLAM em todas as distribui¢des, bem como, convergiu mais rapidamente conforme
demonstrado na terceira linha da Figura E importante ressaltar que a nuvem de pontos
gerada pela fotogrametria passou por operacdes manuais de rotacgao e escala para coincidir com
a nuvem de pontos da referéncia e, em seguida, os erros foram estimados. Essas operacoes
foram realizadas porque a fotogrametria € mais sujeita a erros rotacionais e de escala, uma vez
que utiliza apenas de recursos visuais para efetuar a reconstrugao.

Com relagdo ao tempo de processamento, a reconstrugao realizada pela fotogrametria foi
feita utilizando 103 imagens de tamanho 640 x 480 pixels, e levou 22 minutos e 18 segundos,
enquanto o método Visual-SLAM, levou 59 +49 ms por quadro e 763 + 200 ms por quadro-

chave para atualizar a reconstrugdo.

4.4. Consideracoes sobre a Investigacao em Fotogrametria

Partindo da necessidade de adequagdo as vigentes normas e resolugdes ambientais para
a exploracdo de cavernas e minas subterraneas, a Vale desenvolveu o EspeleoRobd, um dis-
positivo robdtico reduzido e com arquitetura modular capaz de realizar missdes teleoperadas.
Este robd foi concebido para dar suporte as atividades de espeleologia, cujo objetivo € extrair
informacodes do local de interesse, tais como a modelagem 3D. Baseado nessa necessidade, este
trabalho apresentou uma investigacdo sobre reconstru¢des 3D para estes ambientes através das
técnicas da fotogrametria.

O trabalho iniciou-se com a investigacdo de um software open source que fosse ca-
paz ndo s6 de fazer a fotogrametria, mas que também, apresentasse recursos suficientes para a
realizacdo de reconstrucdes 3D em ambientes subterraneos. O software AliceVision - Mesh-

room apresentou os melhores resultados na anélise e, por isso, deu sequéncia a este trabalho.
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Em seguida, foi proposto um fluxo de reconstru¢do, cujo objetivo era ser capaz de superar algu-
mas das limitacdes dos ambientes analisados. Esse fluxo, por sua vez, foi comparado ao fluxo
padrao do software como forma de validacao. Na sequéncia, foram realizadas as fotogrametrias
de dois ambientes representativos, sendo um deles simulado e o outro real. Com o resultado das
reconstrugdes, observou-se que a alteragdo proposta apresentou beneficios na qualidade da fo-
togrametria e promoveu aumento no tempo de processamento de aproximadamente 30%. Ainda
nessas reconstrucoes, notou-se duas particularidades que afetaram diretamente nos resultados:
a relacdo da estimativa do SfM com a rotacdo sobre o eixo do robd, e a relacdo do campo de
visdo da cidmera com a presenca de buracos. Por fim, a fotogrametria foi comparada a outros
dois métodos, LiDAR-SLAM e Visual-SLAM, como forma de analisar o erro ponto a ponto
e o tempo necessdrio para realizar a reconstrucao. Nesta comparagdo foi possivel notar que a
fotogrametria apresenta boa precisao quando comparada a métodos ativos.

Com base nas informagdes acima expostas, pode-se concluir que este trabalho conseguiu
investigar as técnicas de fotogrametria, bem como suas limitacdes aplicadas nos ambientes
definidos pelo escopo do trabalho. Apoiado nestes resultados, acredita-se que estas técnicas
podem ser reproduzidas e extrapoladas para quaisquer outros tipos de ambientes aplicados a
mineracdo e com menos limitagdes, tais como frente de mina, patio de estoque de produtos,

entre outros.

4.5. Trabalhos futuros
Como trabalhos futuros, sdo sugeridos:

* Realizagdo de testes em ambientes reais com os atuais parametros;

* Avaliacdo da utilizacdo de outras cameras com campo de visdo, na vertical, superior ao
utilizado neste trabalho (42,5°);

» Utilizacado de referéncias externas na fotogrametria para reduzir os problemas de escala e

rotagao;

* Combinar a fotogrametria com informacdes de odometria do robd, a fim de minimizar os
problemas de escala na reconstrucao. Essa informac¢do pode ser ttil também na navegacao

e pode até ser utilizada como técnica de pré-mapeamento para as metodologias SLAM.
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5. DETECCAO DE POTENCIAIS FALHAS PRECOCES
EM DUTO DE REJEITOS COM DISPOSITIVO
ROBOTICO E APRENDIZADO DE MAQUINA

Este Capitulo apresenta uma proposta, constru¢cdo e avaliacdo de um sistema de visao
computacional de deep learning para a identificacdo de potenciais falhas precoces na tubulagdo
de rejeitos da Usina do Salobo. Sao descritos, também, os resultados apresentados no relatério
técnico: Inspecdo da tubulacdo de rejeitos das usinas de Salobo (MAGNO et al., 2019) e no
artigo de conferéncia: Deep Learning for Early Damage Detection of Tailing Pipes Joints with
a Robotic Device (RESENDE FILHO et al., 2020), frutos de trabalhos em colabora¢do com os
coautores indicados nos documentos citados.

Na industria da mineragdo é comum a utilizacdo de grandes distancias de tubos, sendo
eles de tamanhos e materiais variados. Somente nas instalacdes da Mina do Salobo, mina de
cobre localizada no interior da Floresta Amazodnica, existem mais de trés quildmetros e meio
de tubos de rejeitos. O rejeito gerado apds o processamento do minério de cobre nessa mina é
enviado para uma barragem através de um tubo, que possui um diametro de 1200 mm, feito de
Polietileno de Alta Densidade (do inglés High-Density Polyethylene, HDPE).

O rejeito devido a sua alta velocidade e ao atrito, provoca efeito de abrasdo no re-
vestimento interno ao passar pelo tubo, proporcionando o desenvolvimento de anomalias na
tubulacao em forma de rasgos, buracos e superficies irregulares. Por esse motivo, a cada seis
meses, € necessario inspecionar as condi¢des da tubulacdo. Uma rotina de inspegdo regular
¢ baseada na abertura de “janelas” (cortes com um tamanho aproximado de 80 x 60 cm) no
tubo e, em seguida, na execucdo de uma inspecao visual no local, feita por um mantenedor.
Esse processo € caro, lento e trabalhoso, pois a inspecdo € restrita a uma regido curta perto da
janela. Uma falha na deteccdo de danos ou anomalias na inspecdo pode permitir vazamentos,
sendo capaz de interromper todo o complexo produtivo por vdrias horas ou dias, gerando perdas
econdmicas significativas e aumentando os riscos operacionais para os trabalhadores.

Embora a equipe de manutencao realize uma inspecao visual cuidadosa em toda a infra-
estrutura e equipamentos da planta para evitar possiveis irregularidades, a extensao dos tubos e
0s perigos como gds toxico, calor, entre outros, exigem um mecanismo de inspe¢ao autdbnomo.
Nesse sentido, o uso de um dispositivo robdtico remoto que possa entrar nos dutos para inspe¢ao
de maneira simples e confidvel € uma solucdo desejavel.

Para a execugdo desta atividade foi proposta a utilizagdo do EspeleoRobo, dispositivo
descrito na Subsecdo [2.1.4] e apresentado nas Figuras [1.5] 2.5 B.2]e @.6] O robd possui uma
grande variedade de sensores para executar missdes autdbnomas e teleoperadas, como LiDAR,
cameras de imagens digitais (RGB) e de profundidade (RGB-D) e sensores de gas, tornando-o
adequado para a atividade.

Para a atividade de inspecdo, trés cameras RGB de alta defini¢do localizadas em dife-
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rentes posi¢cdes no robd foram utilizadas para gravar videos que, posteriormente, poderiam ser
utilizados pelos operadores de manutengdo para detectar remotamente os potenciais danos den-
tro dos tubos. A inspecdo se concentrou principalmente nas juntas dos tubos que, em geral,
sdo as dreas mais impactadas. A captura de video € util e aumenta a seguranca nas operacoes
de inspec¢do, entretanto, a detec¢do automdtica de potenciais falhas precoces, proposta neste

trabalho, permite a verificacdo e tomada de decisdo mais agil pelas equipes de manutengao.

5.1. Trabalhos relacionados

Kakogawa et al.| (2018) apresentam AIRo03, um robd desenvolvido para a inspecdo de
tubos com didmetro inferior a 100 mm. O AIRo3 apresenta um design compacto, podendo
avancar/retroceder e se mover helicoidalmente dentro das tubulagdes. O robd pode, também,
apresentar diferentes configuracdes em suas juntas, alterando o seu formato para melhor se
adaptar ao ambiente inspecionado.

Wahed e Arshad| (2017)) desenvolvem um robd do tipo prensa de parede para inspecao
de tubos. Este robd é composto por trés secdes: camera, mddulo de direcdo frontal e médulo de
direcdo traseira, apresentando comprimento total de 542 mm e didmetro de 230 mm. Segundo
os autores, esta configuracao, é mais barata e necessita de menos manuten¢do comparado com
os robds de multiplas rodas.

Para tentar contornar problemas de deslocamento de robds nas ramificacdes em oleodu-
tos, Masuta et al.|(2013) apresentam o Pipe Inspection Robot, um rob6 de inspecao de tubos que
pode operar em uma ampla gama de diametros e contornar as curvas. No trabalho, os autores
propdem o reconhecimento do tubo de derivacao usando um sensor de visdo de grade de fibra,
capaz de reconhecer a posicao e a dire¢ao da flexdo para executar o movimento de rotagao.

Para identificar defeitos que podem causar danos ao sistema de tubos, Ganegedara et al.
(2012) afirmam que a abordagem popular tem sido enviar robds com controle remoto para foto-
grafar e processar as imagens. Dessa forma, os autores apresentam uma abordagem baseada em
mapas auto-organizados que tem como objetivo isolar regides de interesse que possam conter
defeitos. Com um algoritmo que consiste em trés fases, eles restringem a darea de busca para
deteccao de defeitos e demonstram a eficicia da abordagem proposta para um conjunto de dados
de imagem de tubo real.

Chen et al. (2018)) apresentam uma abordagem de aprendizado de ponta a ponta, baseada
em aplicacoes com CNN e TL para realizar uma detec¢do, baseada em visdo, de tubulagcdao de
esgoto. A estrutura de deteccdo foi dividida em deteccdo de movimento da camera, deteccdo
anormal de quadros de video e classificacao de defeitos de quadros anormais. Para melhorar a
precisdo da deteccao, foi adotada a estratégia de TL utilizando o conjunto de modelos multiplos,
os quais atingiram precisdao de 81%. No entanto, o método proposto pode ser aplicado apenas
para detectar defeitos com caracteristicas dbvias e apresenta baixo desempenho na detec¢ao de

defeitos com caracteristicas ndo significativas.
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Para obter alta precisao e classificagdo robusta para a deteccao de vazamento em tubos de
transmissdo de petréleo bruto, fundiram imagens RGB com imagens térmicas
usando uma CNN. A aplicac¢do da fusdao na CNN superou em 10% a precisao alcancada por
algumas redes estado da arte (LeNet5, AlexNet, VGGNet16 e ResNet50).

Neste trabalho combina-se roboética e deep learning para uso em uma aplicacdo que
exige uma inspecao eficaz para manter a produ¢do de uma planta de mineragdo e também a
seguranca do meio ambiente. E proposto um servico capaz de realizar a inspecio de maneira
simples, rdpida e confiavel.

5.2. Métodos e procedimentos

Esta Secao apresenta os procedimentos realizados durante a coleta de dados e as etapas

de construcdo do detector de juntas de rejeito.

5.2.1. Coleta de dados

O conjunto de dados utilizado neste trabalho foi obtido por meio de uma inspecao reali-
zada em setembro de 2019 no duto de rejeitos da Usina do Salobo (coordenadas: 5°47'05.6” sul,
50°31"29.1” oeste). A tubulagdo tem extensdo aproximada de 3,5 km, consistindo de trechos de

12 m conectados. A Figura[5.1|mostra uma vista superior da planta e da tubulagéo.

Mina do Salobo - Vale 5/A |

Figura 5.1: Vista superior da Mina do Salobo. A linha em amarelo destaca a tubulacao.

Fonte: Adaptado de |Google Earth| (2020).

Dentre as camera embarcadas no EspeleoRobd, a filmagem escolhida para ser usada
neste trabalho foi a realizada pela camera digital BO6W-1080P-HX (SV3C, Longgang District),
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que possui campo de visdo de 70° e, consequentemente, facilita a detec¢do das potenciais fa-
lhas. A inspecdo foi realizada apenas nas regides mais criticas do complexo de tubulacdes e

o rob0 entrou nos tubos a partir das janelas usadas para inspecdo visual, conforme exposto na

(a) Janela aberta na tubulacdo (b) EspeleoRob6 sendo inserido pela janela

Figura 5.2: Inspecao dos tubos de rejeito.
Fonte: Resende Filho et al.|(2020).

Nos videos analisados, pode-se verificar que uma das situacdes mais recorrentes na
tubulacdo é o dano precoce nas juntas entre os trechos. Esses defeitos sdo caracterizados por
descontinuidade/orificios na parte inferior da junta. A Figura[5.3| mostra um exemplo de uma

junta em boas condicdes e outra com um defeito inicial.

(a) Junta em bom estado (b) Junta com potencial defeito precoce,
devido a descontinuidade na parte inferior

Figura 5.3: Exemplos de juntas.
Fonte: Adaptado de [Resende Filho ef al| (2020).

68



Com base nestas caracteristicas, este trabalho pode ser visto como tendo duas classes a
serem categorizadas: boas e ruins, onde o bom € representado pelas juntas em bom estado e o
ruim por aquelas com potenciais defeitos precoces.

A obtencdo das imagens para o conjunto de dados foi realizada com um algoritmo em
Python a partir da biblioteca OpenCV (BRADSKI, 2000). Sendo assim, a partir dos videos
foram extraidas 187 imagens de cada classe. Os conjuntos de treinamento e teste utilizam 70 e
30% do conjunto de dados, respectivamente, o que representa 130 imagens para o conjunto de
treinamento e 57 para o conjunto de teste. As imagens utilizadas nos testes foram retiradas de
trechos de tubulacao diferentes daqueles do treinamento, garantindo assim que a capacidade de

generalizag¢do da rede fosse testada.

5.2.2. Desenvolvimento da rede neural convolucional

Uma Rede Neural Convolucional ¢ uma rede multicamada projetada especificamente
para reconhecer formas bidimensionais com um alto grau de translacdo, escala, inclinacdo e
outras formas de distorcao, sendo capaz de extrair automaticamente suas proprias caracteristicas
de um conjunto de dados (HAYKIN, 2009). Para construir e treinar as redes, utilizou-se o
PyTorch (PASZKE et al., [2019), uma biblioteca de ML de cddigo aberto. Todo o cédigo foi
desenvolvido na linguagem Python.

Como o conjunto de dados usado foi limitado, treinar uma rede desde o inicio de sua
concepgao nao era uma opg¢ao viavel. Para superar esta dificuldade, utilizou-se técnicas de TL
nos modelos, ou seja, inicialmente considerou os pesos dos modelos ja treinados e consolidados
em grandes conjuntos de dados e depois eles foram ajustados para este caso, em especifico. Por-
tanto, os testes foram feitos com AlexNet (KRIZHEVSKY) [2020), DenseNet (HUANG ef al.,
2017), GooglLeNet (SZEGEDY et all 2015), Inception V3 (SZEGEDY et al., |2016), Mnas-
Net (SZEGEDY et al., 2016), MobileNet V2 (SANDLER et al., 2018), ResNet (HE et al.|
2016)), ResNeXt (XIE et al., 2017), ShufflleNet V2 (MA et al.,[2018)), SqueezeNet (IANDOLA
et al.,2020), VGG (SIMONYAN e ZISSERMAN, 2020) e Wide ResNet (ZAGORUYKO e KO-
MODAKIS| 2020).

Antes de treinar as redes, foi realizado um DA, produzindo as seguintes operacoes:

ajuste de saturacdo e matiz de com um fator 0,5;

rotacdo horizontal aleatoria, com 60% de probabilidade de ocorréncia;

* rotacdo vertical aleatdria, com 60% de probabilidade de ocorréncia;

distor¢do na escala de 0,3, com uma probabilidade de 30% de ocorrer;

* rotacdo aleatdria no eixo de -45° até +45°.

Para cada rede, o treinamento foi feito com 20 épocas e os testes de validacdo foram

repetidos 3 vezes, a fim de se obter a média dos melhores resultados.
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5.2.3. Mapas de ativacao de classe

Para validacdo da rede, os CAM foram realizados para analisar a regido com maior
relevancia em sua classificagdo. O CAM € mecanismo usado para destacar qual regido chamou
mais aten¢do na imagem para definir a classe, mas ele nao representa diferentes classes. A
sua representacao € feita através de um mapa de calor sobre as imagens testadas. Apés o CAM,
uma caixa delimitadora foi criada em cima dele, com objetivo de enquadrar o local mais quente,

refor¢cando o seu resultado.

5.2.4. Tempo de execucao

Para os modelos que apresentaram as melhores precisdes, foi realizado um teste de
tempo de execucdo em diferentes tipos de hardware. Com esses resultados, € possivel veri-
ficar qual rede é mais eficiente e a necessidade de se utilizar GPU no computador embarcado

no robo.

5.2.5. Rede neural convolucional de disparo tinico

Como forma de automatizar a deteccao de potenciais falhas precoces e usar o proces-
samento apenas quando necessario, uma rede no YOLOV3 foi treinada para detectar as juntas
na tubulacdo. O treinamento da rede foi feito com base no modelo Darknet-53, aplicando as
imagens de treinamento do conjunto de dados como entradas. Em seguida, testes de validag¢ao
foram realizados para avaliar as saidas obtidas pela rede através do mAP e das predicdes reali-

zadas.

5.2.6. Fluxo esquematico do software proposto

Considerando as etapas apresentadas nas Subsecdes anteriores, pode-se representar este
sistema de detecgdo e classificagdo conforme a Figura[5.4, A CNN utilizada para o disparo
unico € responsavel pela deteccao das juntas, sdo classificadas pelas demais CNNs em seguida.
Os outros testes descritos foram utilizados para validar visualmente e temporalmente a viabili-

dade do sistema.

Deteccado Classificacao

Entrada Junta detectada Junta Classificada ! )

-

Figura 5.4: Esquematico do fluxo de software proposto para detec¢do e classificagdo das juntas.
Fonte: O autor.
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5.3. Resultados e discussoes

Esta Secdo apresenta os resultados obtidos para cada um dos testes propostos anterior-

mente.

5.3.1. Treinamento da rede neural convolucional

Para os modelos mencionados na Subsec¢io testes de treinamento e validagio fo-

ram realizados. A Tabela[5.1|mostra a média dos melhores resultados obtidos para cada rede.

Tabela 5.1: Resultados de acuricia para cada rede neural convolucional testada.

Média da melhor
Modelo . .
acuracia no teste [ %]

AlexNet 100,0 += 0,0
DenseNet 100,0 £ 0,0
GoogleNet 100,0 £ 0,0
Inception V3 100,0 £ 0,0
MnasNet 89,2 £+ 7,1
MobileNet V2 100,0 = 0,0
ResNet 100,0 = 0,0
ResNeXt 100,0 £ 0,0
ShuffleNet V2 90,9 £ 9,8
SqueezeNet 83,9 £ 27,9
VGG 100,0 = 0,0
Wide ResNet 100,0 = 0,0

Fonte: [Resende Filho et al.| (2020).

De acordo com a Tabela[5.1] € possivel verificar que a maioria dos modelos apresentou
100% de acuricia. Isso pode ser explicado pelo fato da junta ter caracteristicas semelhantes a
uma borda, o que € facilmente detectavel pelas CNNs. Tomando como exemplo a rede ResNet,
na Figura [5.5] é possivel observar o comportamento da acuricia nas etapas de treinamento e
validagdo ao longo das épocas.

Os modelos de redes MnasNet, ShuffleNet V2 e SqueezeNet ndo apresentaram média de
100% na acurécia (Tabela[5.)), portanto, eles ndo serdo considerados para as proximas anélises

realizadas para este trabalho.
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Acuracia nas Etapas de Treinamento e Validagao
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Figura 5.5: Curvas de acuricia das etapas de treinamento e validacdo para a rede ResNet.
Fonte: O autor.

5.3.2. Mapas de ativacao de classe

Como a maioria dos modelos apresentou acuracia de 100%, o CAM foi utilizado como
forma de validacao visual dos resultados. Esta técnica foi aplicada ao modelo ResNet para todo
o conjunto de dados de teste. A arquitetura desta rede facilita a extragdo de sua dltima camada
de convolucgao e, como os resultados de sua acurdcia foram 100%, permite inferir que as regides
mais quentes tendem a ser aproximadamente as mesmas para todas as redes. Na Figura [5.6]é
possivel observar o CAM aplicado a duas juntas: uma boa e uma ruim. Nota-se que, indiferente

da classe, o nivel de calor é semelhante.
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(a) Mapa de calor gerado para (b) Mapa de calor gerado para
uma junta boa uma junta ruim

Figura 5.6: Resultados do mapa de ativacdo de classe.
Fonte: Resende Filho et al.| (2020).
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Nas imagens obtidas pelo CAM, uma caixa delimitadora foi criada para destacar a regidao
mais quente/ativa da imagem (Figura[5.7)). Esta caixa foi estimada por meio de um fator de 0,8
sobre o CAM. Este valor foi definido empiricamente por meio de experimentos, como sendo um
bom compromisso entre a boa precisao da localizacdo e o tamanho real da anomalia projetada

nas imagens.
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(a) Caixa delimitadora no mapa de (b) Caixa delimitadora no mapa de
calor em uma junta boa calor em uma junta ruim

Figura 5.7: Caixa delimitadora aplicado ao mapa de ativagdo de classe.
Fonte: Resende Filho et al| (2020).

Uma vez que a caixa delimitadora foca onde estdo as anomalias, fica claro que a area
com maior influéncia na classificagdo € a parte inferior da junta do tubo, as quais representam a

maioria dos defeitos anteriormente caracterizados, manualmente, pelo operadores.

5.3.3. Tempo de execucao

O teste de tempo de execucdo foi aplicado apenas as redes que mostraram 100% de
precisdo (consultar Tabela [5.1). Trés diferentes hardware foram usados: Google Colab - Tesla
T4, NVIDIA - GeForce 930M e Intel Core 15-8250. Nos testes, foi calculado o tempo necessario
para que cada modelo realizasse uma classificacdo de todo o grupo de teste (114 imagens). A
Tabela[5.2] apresenta os resultados.

Considerando que a velocidade de deslocamento do robd na tubulagdo é de 0,3 m/s e
sabendo que a distancia entre as juntas é de 12 m, pode-se dizer que o intervalo de tempo
entre as juntas ¢ de aproximadamente 40 s. Para este periodo de tempo, desconsiderando o
processamento de outras atividades realizadas pelo robd, conforme Tabela[5.2] apenas o uso de
uma CPU ¢ suficiente para qualquer modelo testado. No entanto, sugere-se utilizar aqueles que

possuem maior velocidade de processamento: AlexNet, MobileNet V2 e ResNet.
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Tabela 5.2: Resultados do tempo de execugdo para as redes neurais convolucionais em
diferentes tipos de hardware.

Modelo Google Colab - TESLA T4 NVIDIA - GeForce 930M Intel Core i5-8250
Tempo [ms] Frequéncia [Hz] Tempo [ms] Frequéncia [Hz] Tempo [ms] Frequéncia [Hz]

AlexNet 65 + 4 15,38 52 £ 2 19,23 83 £ 7 12,05
DenseNet 9% + 5 10,42 124 + 10 8,06 236 + 9 4,24
GoogLeNet 63 £ 5 15,87 60 + 2 16,67 118 + 3 8,47
Inception V3 70 + 6 14,29 66 £ 3 15,15 128 + 4 7,81
MobileNet V2 70 + 4 14,29 57 + 2 17,54 8 + 6 11,63
ResNet 65 + 4 15,38 54 £ 2 18,52 89 + 6 11,24
ResNeXt 68 + 4 14,71 76 £ 1 13,16 156 £ 5 6,41
VGG 56 + 6 17,86 167 + 10 5,99 267 + 12 3,75
Wide ResNet 70 + 4 14,29 138 £ 7 7,25 138 £ 16 4,00

Fonte: Adaptado de Resende Filho et al.|(2020).

5.3.4. Rede neural convolucional de disparo tinico

O treinamento da YOLO foi feito com o objetivo de encontrar as juntas dentro do tubo.
A Figura [5.8] mostra o grifico da evolugdo das respostas apds 4000 épocas. Em azul sdo apre-

sentados os valores de perda e em vermelho os valores da precisdo média ponderada.
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Figura 5.8: Valores resultantes do treinamento do detector YOLOv3 no conjunto de dados.
Fonte: Resende Filho et al.|(2020).

Como pode ser visto na Figura [5.8] entre 250 e 500 épocas, o resultado da perda ja
¢ inferior a 1,0. Ao final, obteve-se um mAP de 94,4%, demonstrando que a rede é capaz de
encontrar a junta. Em seguida, o conjunto de dados de teste foi aplicado a rede treinada para
analisar o resultado (Figura[5.9). A YOLO, neste caso, foi utilizada apenas para detectar a junta

(destaque em roxo), ndo sendo responsavel por sua classificacao.
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(a) Exemplo de deteccdo aplicado a (b) Exemplo de detecgao aplicado a
uma junta boa uma junta ruim

Figura 5.9: Detec¢des de juntas realizada pela rede YOLOV3.
Fonte: Resende Filho et al.|(2020).

5.4. Consideracoes sobre a Inspecao Automatizada de Dutos

A partir da necessidade de acompanhar as condi¢des da tubulacdo de rejeitos, a atividade
de inspecdo da tubulacdo € realizada periodicamente na Usina do Salobo, minimizando o risco
de vazamentos ou quaisquer outros problemas. O processo € realizado atualmente de forma ma-
nual e, por conta da extensao da tubulacao (aproximadamente trés quildmetros e meio), € caro,
lento e trabalhoso. Neste contexto, viu-se a possibilidade de usar um dispositivo robético que
fosse capaz de entrar na tubulagdo e realizar a inspe¢ao de trechos mais longos de maneira rapida
e confidvel. Para a execucao desta atividade, foi proposta a utilizacdo do EspeleoRobd com uma
abordagem deep learning para dar suporte a decisao sobre as atividades de manutencao.

Durante os procedimentos, observou-se que os modelos AlexNet, DenseNet, GoogLe-
Net, Inception V3, MobileNet V2, ResNet, ResNeXt, VGG e Wide ResNet foram mais eficien-
tes, atingindo 100% de acuricia, enquanto os modelos MnasNet, ShuffleNet V2 e SqueezeNet
apresentaram resultados mais baixos para a aplicacdo. Como forma de validar visualmente as
redes, o CAM foi implementado e demonstrou que a regido mais ativa da imagem coincide com
aregido em que os defeitos estdo concentrados. Nos testes de tempo de execucao, pode-se cons-
tatar que as redes AlexNet, MobileNet V2 e ResNet tiveram performance melhor que as demais,
uma vez que tiveram os menores tempos de processamento. Por fim, através do YOLOV3 foi
possivel detectar a junta com alto grau de precisdo: mAP de 94,4%.

Uma vez que todos os resultados apresentaram desempenho satisfatorio, essas estrutu-
ras podem ser conectadas em um dnico servico, a fim de auxiliar na inspecao das tubulacoes.
Assim, pode-se concluir que a hipétese inicial de trabalhar com ML na deteccao de potenciais
defeitos nas juntas dos rejeitos € vidvel, podendo ser aplicada nos desenvolvimentos posteriores

do software do EspeleoRobo.
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3.5.

Trabalhos futuros
Como trabalhos futuros, sdo sugeridos:

Realizacdo de testes para validacdo do sistema proposto e também para coletar mais da-

dos, de forma a melhorar sua a robustez;

Uma vez que as juntas apresentam distribui¢do uniforme no tubo, propde-se combinar
a deteccao das juntas com as informacdes de odometria do EspeleoRob0, utilizando a

deteccao como mais uma varidvel para minimizar os erros associados a posi¢ao;

Utilizagao do YOLOV3 como detector de juntas ruins, focando apenas no defeito. Esta
operagao reduz o nimero de atividades do sistema atual e permite mais uma comparagao,

o que favorece na defini¢do do melhor sistema a ser utilizado.
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6. CONSIDERA COES FINAIS

Este Capitulo apresenta as consideracoes finais e as contribuicdes desta dissertacao, com
viés de revisdo e fechamento, uma vez que as informacdes ja foram apresentadas para cada
estudo de caso.

Gragas a sua popularizacao e crescente demanda, a robdtica estd cada vez mais pre-
sente em nossas vidas. A partir do momento que os robos ganharam mobilidade e passaram a
interagir com as pessoas, novas perspectivas de desenvolvimentos surgiram, permitindo a sua
utilizagdo em tarefas repetitivas, perigosas ou naquelas que as pessoas ndo querem fazer. Desde
a ultima década, que foi marcada pela digitalizacdo e a transformacao digital, a rob6tica mével
se aproximou da industria. Dentre os setores da industria em que isso ocorreu, pode-se desta-
car a mineragdo, por apresenta forte impacto na economia e por ser um ambiente desafiador.
Apesar das aplicacdes robdticas se tornarem mais frequentes na mineragdo, investimentos e
pesquisas ainda devem ser feitas para o aperfeicoamento de mecanismos robéticos e sistemas
de localizacio, navegagdo, e controle, buscando atingir o pleno desenvolvimento. E importante
destacar que a mineragdo apresenta particularidades relacionadas ao seu ambiente, tais como
presenca de poeira, alta umidade e locais com baixa luminosidade que dificultam e impossibili-
tam algumas aplicagdes.

Nesta perspectiva, encontra-se esse trabalho com a proposta de realizar o desenvolvi-
mento de servicos robdticos para atuagdo na mineracdo, sendo feita a apresentacdo de trés
estudos de caso aplicados: (i) Dispersao de Etiquetas Eletronicas, (ii) Investigaciao em Fo-
togrametria, e (iii) Inspecao Automatizada de Dutos.

O primeiro estudo de caso, Dispersao de Etiquetas Eletronicas, foi motivado pela
necessidade de manter estavel o processo de flotacdo da Usina do Salobo. Foi observado que
conhecer a composi¢dao do minério desde o processo de desmonte € importante na estabilizacdo
do processo de flotacdo e, consequentemente, na qualidade final do produto. A atividade de
rastreabilidade do minério ja havia sido realizada por duas metodologias diferentes, contudo
sem sucesso. Neste contexto, foi proposto o desenvolvimento de um dispositivo eletromecanico
para ser acoplado a uma RPA com o objetivo de realizar dispersoes tele-operadas que fossem
capazes de auxiliar na atividade de rastreio. O Capitulo [3| apresenta o passo a passo deste
desenvolvimento. Ao final deste estudo de caso, validou-se o dispositivo utilizado em ambiente
real atingindo um nivel 7 na escala TRL, determinou-se os pardmetros de execucao da atividade
(altura de 25 m, distancia dos waypoints de 20 m e velocidade de 3 m/s) e solicitou-se um
pedido de patente de invengdo para o dispositivo e 0 método desenvolvido.

O segundo estudo de caso, Investigacao em Fotogrametria, foi motivado pela neces-
sidade de adequagdo as vigentes normas e resolucdes ambientais para a exploracao de cavernas
e minas subterraneas. Para tal, é necessdria a realizacdo da espeleologia do local de interesse,
a fim de se obter informacdes a respeito das cavidades, antes de se iniciar quaisquer atividades

de extra¢do. Sabendo que uma das atividades da espeleologia € a modelagem 3D do ambiente,
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viu-se a oportunidade de utilizar robds mdveis na execugdo da atividade. Neste contexto, foi
proposta a realizacdo de uma investigagdo quanto a técnica de fotogrametria, a partir de ima-
gens obtidas pelo EspeleoRobd. O Capitulo [] apresenta o passo a passo desta investigagao.
Primeiramente, o software AliceVision - Meshroom foi selecionado para este trabalho a par-
tir de uma comparacao com outros software. Em seguida, validou-se um fluxo alternativo de
reconstru¢do 3D, com alteracdes nas operacoes de FeatureMatching e StructureFromMotion, e,
também, utilizou-se o recurso Augment Reconstruction. Durante os procedimentos, observou-se
duas particularidades quanto a execucdo da fotogrametria em ambientes com pouca iluminacao:
relacdo inversamente proporcional entre a rotacdo do robd e a defini¢do do SfM e a relacdo dire-
tamente proporcional entre o campo de visdo e a qualidade da reconstrugdo. Por fim, através da
comparacao da fotogrametria com outros métodos de reconstru¢cdo 3D, foi possivel notar que
99,7% dos pontos da nuvem de pontos da fotogrametria apresentam erros inferiores a 50 cm. Es-
tes resultados demonstraram que a fotogrametria pode ser utilizada em ambientes subterraneos
e pode ser extrapolada a outros locais na minerag¢do, que apresentam menos restri¢des.

O terceiro estudo de caso, Inspecao Automatizada de Dutos, foi motivado pela ne-
cessidade da realizacdo de inspecao da tubulacdo de rejeitos da Mina do Salobo, que fica no
interior da Floresta Amazonica. Quaisquer problemas nesta tubulagdo s@o capazes de interrom-
per o complexo produtivo por horas e, até mesmo, dias. Atualmente, a atividade de inspecao
€ realizada de maneira manual e € limitada por conta dos perigos e da dificuldade de realiza-
la em toda a sua extensdo. Neste contexto, foi proposta a utilizacdo do EspeleoRob0 para a
realizacdo desta atividade, ja que o rob0d poderia entrar na tubulacio e inspecionar trechos mai-
ores. O Capitulo [5 apresenta a proposta de um sistema para realizar a detec¢do automatica de
potenciais falhas precoces. Primeiramente, diferentes tipos de redes neurais foram testadas na
deteccao, das quais os modelos AlexNet, DenseNet, GoogleLet, Inception V3, MobileNet V2,
ResNet, ResNeXt, VGG e Wide ResNet apresentaram 100% de acurdcia. Em seguida, foi re-
alizada a validacdo visual dos resultados obtidos através do CAM. Nestes testes, a regido com
maior ativacdo coincidiu com a regido do potencial defeito precoce. Na sequéncia, através de
testes de tempo de execugdo, validou-se que as redes AlexNet, MobileNet V2 e ResNet apre-
sentaram os menores tempos de processamento. E, para finalizar, foi aplicado o YOLOvV3 sobre
as juntas e obteve-se a detecc¢ao delas com alto grau de precisao, mAP de 94,4%. Estes resulta-
dos demonstram que € possivel desenvolver um sistema automdtico para suporte a decisoes na
inspecoes das tubulagdes.

Os trabalhos futuros sdo apresentados nos devidos capitulos autocontidos. Notadamente,
as sugestdes sobre o tema Dispersao de Etiquetas Eletronicas podem ser vistos na Se¢io
sobre o tema Investigaciao em Fotogrametria na Secio e sobre o tema Inspeciao Automa-
tizada de Dutos na Sec¢do[5.5]
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6.1. Contribuicoes

Durante o desenvolvimento das pesquisas relacionadas a dissertacdo, foi possivel re-
alizar contribui¢des para os eixos cientificos, tecnoldgicos, industriais e sociais, das quais

destacam-se:

6.1.1. Contribuicoes cientificas

* Publicacdo de artigo em periodico (co-autoria): Towards semi-autonomous robotic ins-
pection and mapping in confined spaces with the EspeleoRobd no Journal of Intelligent

and Robotic Systems. Resultados deste artigo sdo parte do Capitulo {4}

* Publicacdo de artigo de conferéncia ¢ apresentacdo: Deep Learning for Early Damage
Detection of Tailing Pipes Joints with a Robotic Device no CASE 2020 - International
Conference on Automation Science and Engineering. Resultados desta publicacdo sdo
parte do Capitulo[5]

* Publicagdo de artigo de conferéncia (co-autoria): Visdo Computacional e Redes Neurais
Convolucionais aplicadas & Detec¢do de Vazamentos de Oleo no Congresso Brasileiro de
Automatica (CBA) 2020.

* Publicacdo e apresentacdo do resumo: [nvestigation on Photogrammetry and LiDAR
Models for Caves/Mines 3D Reconstruction no Fall Meeting 2019 - AGU (Unido de
Geofisica dos Estados Unidos). Resultados desta publicacdo sao parte do Capitulo

6.1.2. Contribuicoes tecnolégicas

* Inventor no pedido de patente da invencao: Dispositivo e método para lancamento de
etiquetas eletronicas sobre rocha desmontada a partir de um veiculo aéreo ndo tripulado.
Resultados deste trabalho sdo parte do Capitulo

 Autoria do relatério técnico: Relatdrio de experimentos de campo na Mina do Salobo
(2020). Resultados desta publicacdo sdo parte do Capitulo

* Co-autoria do relatorio técnico: Dispositivo robdtico para inspecdo de ambientes restri-
tos e confinados (2020). Parte dos conhecimentos adquiridos no relatério sdo utilizados
Capitulo [

* Co-autoria do relatdrio técnico: Inspecdo da tubulacdo de rejeitos das usinas de Salobo

(2019). Parte dos conhecimentos adquiridos no relatdrio séo utilizados nos Capitulos @ e[S}
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6.1.3. Contribuicoes industriais

Participagdo em operagdes de inspe¢dao em Nova Lima e Brumadinho. Inspeg¢des realiza-
das com EspeloRob6 de forma teleoperada para captura de videos para analise de estru-

tura de galerias de barragens. Parte dos conhecimentos adquiridos na tarefa sao utilizados
no Capitulo

Participacdo em operacdo de inspecdo em Salobo. Inspecdo realizada com o Espeleo-
Robo de forma teleoperada para captura de videos para andlise de interior de tubulacao
de rejeitos da usina. Parte dos conhecimentos adquiridos nas tarefas sdo utilizados no
Capitulo[5]

Participacdo em operacdo com drone em Salobo. Atividade foi realizada com drone so-
bre materiais detonadas de forma manual e automatizada para valida¢des do dispositivo
lancador de etiquetas eletrOnicas. Parte dos conhecimentos adquiridos nas tarefas siao
utilizados no Capitulo

Participacdo em operagcdo com drone no Complexo Mineral de Mariana. Operagdo com
drone sobre correrias transportadoras para captura de videos termais dos rolos e cor-

reias transportadoras. Parte dos conhecimentos adquiridos na tarefa sdo utilizados no
Capitulo[3]

Treinamento de Operacdo de Drones para funcionarios do ITV e Vale, abordando os se-
guintes temas: conceitos basicos, equipamentos embarcados, aplicacoes, legislagdo bra-
sileira, planejamento e execucdo de voos manuais e automatizados. Parte dos conheci-

mentos adquiridos na tarefa sdo utilizados no Capitulo

Treinamento de Técnicas de Reconstru¢@o 3D para turma Vale (Mina de Sossego, Canaa
dos Carajas - PA) sobre aspectos tedricos e praticos para a reconstru¢do 3D de ambientes.

Parte dos conhecimentos adquiridos na tarefa sdo utilizados no Capitulo ]

6.1.4. Contribuicoes sociais

Reconstru¢ao 3D da Mina du Velosdzl e disponibilizacao dos resultados aos proprietarios

da mina. Esta mina € uma atracao turistica na cidade de Ouro Preto - Minas Gerais;

Palestra no Workshop de Sensoriamento Remoto realizado pelo ITV - 2019, com o tema

de Visdo Computacional e Técnicas de Reconstrucdo 3D na Mineracdo;

Revisor de artigos e voluntdrio no 14° Simpdsio Brasileiro de Automacdo Inteligente
(SBAI) 2019;

Revisor de artigos no VIII Simpésio Brasileiro de Sistemas Elétricos (SBSE) 2020.

"https://skfb.1ly/6SLSV
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APENDICE A: ESTRUTURA
MECANICA DO DISPOSITIVO
LANCADOR DE ETIQUETAS
ELETRONICAS RFID
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Figura Al: Principais vistas da estrutura mecanica do dispositivo lancador de etiquetas
eletronicas RFID.

Fonte: adaptado de acervo ITV.
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APENDICE B: FLUXOS DE RECONSTRUCOES 3D

Fluxo padrao de reconstrucao 3D por AliceVision - Meshroom

Figura B1: Fluxo de reconstru¢@o 3D no software AliceVision - Meshroom.

Fonte: [Alice Vision|(2020).
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Fluxo de reconstrucao 3D proposto

Cameralnit FeatureExtraction ImageMatching FeatureMatching StructureFromMotion DepthMapFilter Meshing MeshFiltering Meshing2
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Figura B2: Fluxo de reconstru¢@o 3D proposto para minimizar limitacdes do ambiente.

Fonte: adaptado de [AliceVision|(2020).
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