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RESUMO

Resumo da Dissertação apresentada ao Programa de Pós Graduação em Instrumentação,
Controle e Automação de Processos de Mineração como parte dos requisitos necessários para a
obtenção do grau de Mestre em Ciências (M.Sc.)

ROBÓTICA MÓVEL NA MINERAÇÃO: ESTUDOS DE CASO COM ROBÔS
TERRESTRES E AÉREOS EM DISPERSÃO DE ETIQUETAS ELETRÔNICAS,

RECONSTRUÇÃO 3D E INSPEÇÃO VISUAL AUTOMATIZADA

Levi Welington de Resende Filho

Abril/2021

Orientadores: Gustavo Pessin
Fernando Santos Osório

A robótica móvel, desde o seu surgimento, sempre foi uma área que despertou o interesse e
atenção de pesquisadores. Hoje, graças ao avanço tecnológico, robôs móveis estão cada vez
mais disponı́veis. Movida pela transformação digital, a indústria viu também a possibilidade de
utilizar robôs móveis em suas instalações. Dentre as áreas industriais que apresentam grande
importância para a economia brasileira, destaca-se a mineração. Diferentemente de outros am-
bientes, a mineração apresenta um universo desafiador aos robôs, dificultando o seu desen-
volvimento. Este trabalho está inserido neste contexto e é desenvolvido sobre três estudos de
caso aplicados à mineração: (i) a necessidade de rastrear o minério de cobre ao longo da ca-
deia de produção, (ii) a necessidade de reconstruir ambientes confinados e (iii) a necessidade
de inspecionar dutos da cadeia de produção. Foram propostas soluções para cada uma dessas
necessidades: (i) desenvolvimento de hardware e software para melhorar o controle de rastrea-
bilidade de minério de cobre por meio de lançamentos de etiquetas eletrônicas RFID, (ii) estudo
investigativo em fotogrametria para executá-la em espaços confinados visando a reconstrução
3D do ambiente e (iii) a construção e avaliação de sistema computacional deep learning para a
identificação de falhas precoces na tubulação de rejeitos da Usina do Salobo. Ao final de cada
estudo de caso, considerações finais são apresentadas demonstrando os resultados obtidos.

Palavras-chave: Robótica de campo, Robótica móvel, Dispersão por drones, Reconstrução 3D,
Inspeção robotizada.

Macrotema: Mina e usina; Linha de Pesquisa: Robótica Aplicada à Mineração; Tema: Sen-
soriamento de Ativos.
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ABSTRACT

Abstract of Dissertation presented to the Graduate Program on Instrumentation, Control and
Automation of Mining Process as a partial fulfillment of the requirements for the degree of
Master of Science (M.Sc.)

MINING MOBILE ROBOTICS: CASE STUDIES WITH GROUND AND AIR ROBOTS IN
ELECTRONIC TAG DISPERSION, 3D RECONSTRUCTION, AND AUTOMATED

VISUAL INSPECTION

Levi Welington de Resende Filho

April/2021

Advisors: Gustavo Pessin
Fernando Santos Osório

Mobile robotics, since its inception, has always been a focus of interest and attention of re-
searchers. Today, thanks to technological advancement, mobile robots are increasingly avail-
able. Driven by the digital transformation, the industry also saw the possibility of using mobile
robots in its facilities. Among the industrial areas that are of great importance to the Brazilian
economy, mining stands out. Unlike other environments, mining presents a challenging uni-
verse for robots, making their development difficult. This work is inserted in this context and
is developed on three case studies applied to mining: (i) the need to track copper ore along
the production chain, (ii) the need to reconstruct confined environments, and (iii) the need to
inspect pipelines in the production chain. Solutions were proposed for each of these needs:
(i) hardware and software development to improve copper ore traceability control through the
launch of RFID electronic tags, (ii) investigative study in photogrammetry to perform it in con-
fined spaces aiming at the 3D reconstruction of the environment and (iii) the construction and
evaluation of a deep learning computational system for the identification of early failures in
the tailings pipe of the Salobo Plant. At the end of each case study, final considerations are
presented demonstrating the results obtained.

Keywords: Field robotic, Mobile robots, Drone Dispersion, 3D Reconstruction, Robotic In-
spection.

Macrotheme: Mine and plant; Research Line: Robotics Applied to Mining; Theme: Asset
Sensing.
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AMBIENTES NA MINERAÇÃO 49
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1. INTRODUÇÃO

Este Capı́tulo apresenta o contexto no qual este trabalho está inserido, os objetivos para
cada um dos desenvolvimentos propostos e, por fim, a estrutura e organização dos capı́tulos
subsequentes desta dissertação.

1.1. Contexto

O final do século XVIII foi marcado pela revolução industrial, a qual modificou todo o
setor produtivo e iniciou a substituição da mão de obra humana por máquinas. Na busca por
processos mais otimizados, a partir da década de 1960 os robôs industriais ganharam destaque.
Atividades que eram consideradas repetitivas, tais como soldagem, montagem, pintura, embala-
gem, entre outras, passaram a ser realizadas por manipuladores robóticos. Os robôs industriais,
como foram classificados, comparados aos humanos nestas atividades, são mais rápidos e mais
precisos (SHIBATA, 2004).

A partir da década de 1990, com o desenvolvimento tecnológico e sua miniaturização,
novos modelos de robôs começaram a ficar disponı́veis no mercado, criando uma nova categoria
na área: a robótica móvel. Esta área, apesar de ser jovem, tem atraı́do a atenção e por isso é
alvo de várias pesquisas. Um robô móvel é capaz de andar ao longo de um ambiente e extrair as
suas caracterı́sticas para usufruir de seus talentos de maneira mais efetiva (SIEGWART et al.,
2011). Além disso, atualmente, eles são capazes de desempenhar atividades complexas de
forma autônoma (YOUSIF et al., 2015), por exemplo, os robôs Opportunity e Spirit (Figura 1.1)
que foram enviados à Marte.

(a) Robô Opportunity (b) Robô Spirit

Figura 1.1: Robôs móveis utilizados na exploração de Marte.
Fonte: Maimone e Matthies (2006).
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Além do uso na exploração espacial, os robôs móveis estão presentes no nosso dia-a-dia.
De maneira geral, eles podem ser classificados em duas subcategorias: de uso pessoal ou de uso
profissional (SHIBATA, 2004). Robôs móveis de uso pessoal são aqueles que são capazes de
desempenhar atividades rotineiras, tais como cortar a grama (Figura 1.2a), aspirar a casa, limpar
a piscina e, até mesmo, dirigir (Figura 1.2b), enquanto os robôs móveis de uso profissional são
àqueles que são capazes de desempenhar atividades que podem gerar risco a saúde humana, tais
como acessar e investigar espaços confinados (Figura 1.2c), desarmar bombas (Figura 1.2d),
entre outras.

(a) Robô cortador de grama (b) Carro autônomo dirigindo na cidade

(c) Drone utilizado para inspeção de ambientes
confinados

(d) Robô sendo utilizado para desarmar uma bomba

Figura 1.2: Exemplos de robôs de serviço.
Fonte: (a) Edwards (2020), (b) Ohsnman (2020), (c) Rectrix Drone Services (2020), (d) TOPSKY (2020).

Desde o inı́cio da última década, a digitalização e a transformação digital têm sido
cada vez mais presentes na indústria (VAIDYA et al., 2018). Este movimento, que promove,
principalmente, a tomada de decisões autônomas, interoperabilidade, agilidade, flexibilidade,
eficiência e redução de custo (PÉREZ D. et al., 2016), proporcionou a entrada da robótica
móvel, também, neste setor. Como exemplos de aplicações, pode-se citar o Energid (Figura 1.3a),
que é um drone desenvolvido com um manipulador robótico embarcado, que permite a realização
de atividades sofisticadas de inspeção com destreza e velocidade (TARDELLA, 2020); o FarmWi-
se Robot (Figura 1.3b), que é um robô terrestre utilizado na agricultura, realiza a detecção e
corte de ervas daninhas de forma autônoma (GUIZZO, 2020); e o ARIEL (Figura 1.3c), que é
composto por um drone e um barco autônomos, executa a detecção de vazamento de óleo em
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meios aquáticos (DE SOUZA, 2020).

(a) Drone Energid (b) FarmWise Robot (c) ARIEL

Figura 1.3: Exemplos de robôs móveis aplicados a indústria.
Fonte: (a) Tardella (2020), (b) Guizzo (2020), (c) de Souza (2020).

Além dos exemplos citados, a robótica móvel pode ser aplicada em quaisquer setores
da indústria, inclusive na indústria de base, por exemplo na mineração. A mineração, possui
forte impacto na economia brasileira, sendo que no ano de 2017 esse setor representou 4% do
Produto Interno Bruto (PIB) nacional e registrou superavit de US$ 23,4 bilhões (MINISTÉRIO
DE MINAS E ENERGIA, 2018). Atualmente no Brasil existem 207 minas em operação, das
quais 33% apresentam produção superior a 1 milhão de toneladas por ano. Dentre as empresas
neste setor, destaca-se a Vale S.A. (Vale), que apresenta grandes parcelas de representatividade
na produção nacional com participação de 71,9% na extração de ferro, 70,6% de participação
na extração de cobre, e de 14,6% de participação na extração de manganês (AGÊNCIA NACI-
ONAL DE MINERAÇÃO - ANM, 2020).

Diante de sua contribuição para a economia e das perspectivas tecnológicas do mercado
atual, a Vale em 2018 iniciou a operação de ativos em modo autônomo: caminhões fora de
estradas (Figura 1.4) e perfuratrizes, e em modo teleoperados: escavadeiras, na mina de Brucutu
- Minas Gerais. Por exemplo, os caminhões que antes eram operados por pessoas, passaram a
ser controlados por sistemas de computadores, Sistema de Posicionamento Global (do inglês
Global Positioning System, GPS), radares e inteligência artificial (VALE, 2020).

(a) Caminhão fora de estrada autônomo na Mina
de Brutucu

(b) Empregado da Vale monitorando
funcionamento do caminhão

Figura 1.4: Caminhão autônomo em operação.
Fonte: Vale (2020).
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Além disso, a empresa em 2014 adquiriu um robô móvel para apoiar no estudo de cavi-
dades naturais, o qual foi batizado de EspeleoRobô (Figura 1.5). Nos últimos anos, o robô pas-
sou por diversas modificações, dando ao dispositivo a habilidade de inspecionar outros espaços
confinados, tais como galerias naturais e tubulações.

Figura 1.5: Evolução do EspeleoRobô.
Fonte: Adaptado de acervo ITV.

Anteriormente foram apresentados dois exemplos de aplicações de robótica móvel apli-
cados à mineração, contudo, esta área ainda apresenta diversos desafios (presença de alta umi-
dade, poeiras, variação da iluminação, diferença de relevos, entre outros) que carecem de es-
tudos e aplicações robustas, tais como: desenvolvimento de mecanismos e sistemas robóticos,
sistemas de localização e navegação para veı́culos e robôs móveis, sistemas autônomos ou te-
leoperados, sistemas de aeronaves pilotadas remotamente, estratégias de controle cooperativo
para robôs heterogêneos (robôs terrestres e aéreos atuando em conjunto na realização de uma
tarefa complexa).

Esta dissertação foi desenvolvida buscando apresentar estudos e aplicações robustas que
visam atender à demanda da empresa do setor mineral e fomentar a sinergia entre o estudo
investigativo, o desenvolvimento tecnológico, a inovação, a produção e a indústria. Mais es-
pecificamente, neste documento são apresentados três estudos de caso, os quais demonstram
alinhamento com o desenvolvimento de pesquisas aplicadas ao setor de mineração com abor-
dagens prático-cientı́ficas que proporcionam aprendizado, conhecimento e contribuições em
diferentes vieses.

1.2. Objetivos

Esta dissertação tem como objetivo geral a proposta, o desenvolvimento e a avaliação de
serviços robóticos para atuação em campo. A dissertação é organizada e desenvolvida sobre três
casos aplicados: (i) Dispersão de Etiquetas Eletrônicas, (ii) Investigação em Fotogrametria,
e (iii) Inspeção Automatizada de Dutos. Dessa forma, para cada aplicação, os objetivos es-
pecı́ficos são listados a seguir.

No tema de Dispersão de Etiquetas Eletrônicas (Capı́tulo 3), os objetivos especı́ficos
são:
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• Propor e desenvolver um dispositivo eletromecânico que seja acoplado a um drone para
dispersão tele-controlada;

• Validar o protótipo desenvolvido em ambiente representativo e em ambiente de mina;

• Realizar a operação assistida na mina, validando a prova de conceito e detalhando as
lições aprendidas;

• Desenvolver procedimento para execução da atividade;

No tema de Investigação em Fotogrametria (Capı́tulo 4), os objetivos especı́ficos são:

• Investigar diferentes softwares para realização de reconstrução 3D por meio de fotogra-
metria;

• Propor metodologia para reconstrução 3D para ambientes subterrâneos por fotogrametria
utilizando o software escolhido;

• Realizar a reconstrução 3D de diferentes ambientes, sejam eles reais ou simulados, por
fotogrametria;

• Comparar resultados obtidos por fotogrametria com LiDAR-SLAM e Visual-SLAM;

• Ser capaz de reproduzir e extrapolar métodos de reconstrução 3D a diferentes ambientes
dentro da área de mineração.

No tema de Inspeção Automatizada de Dutos (Capı́tulo 5), os objetivos especı́ficos
são:

• Propor e desenvolver método de deep learning para identificação de potenciais falhas
precoces em dutos;

• Comparar os resultados obtidos para diferentes modelos de redes neurais convolucionais
para o sistema proposto;

• Validar resultados obtidos através de mapas de ativação de classe;

• Avaliar consumo energético para cada rede neural convolucional em diferentes tipos de
hardware;

• Identificar as juntas utilizando redes neurais convolucionais de disparo único.
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1.3. Organização do texto

Esta dissertação é composta por 6 capı́tulos. Inicialmente, é apresentado um capı́tulo
com o Referencial Teórico, Capı́tulo 2, que introduz a base teórica necessária para as aplicações
dos estudos de caso desenvolvidos. Em seguida, nos Capı́tulos 3, 4 e 5 são apresentados os três
estudos de caso. Cada um desses capı́tulos apresenta suas motivações, trabalhos relacionados,
metodologias, resultados, considerações finais e trabalhos futuros. No primeiro estudo de caso,
Capı́tulo 3, é apresentada uma inovação tecnológica, cuja principal motivação foi auxiliar a
Mina do Salobo na solução de um problema, enquanto os demais estudos de caso, Capı́tulos 4
e 5, apresentam estudos investigativos quanto a fotogrametria aplicada ambientes subterrâneos
e a inspeção automatizada. Por fim, são apresentadas as Considerações Finais, Capı́tulo 6,
as quais realizam o fechamento do trabalho, revisam os objetivos e os resultados obtidos no
desenvolvimento e apresentam a lista de contribuições.

Neste documento, são feitas referências aos trabalhos publicados pelo autor durante o
perı́odo do mestrado. A seguir estão listadas as publicações referentes a cada estudo de caso
desenvolvido.

• Dispersão de Etiquetas Eletrônicas:

– Relatório técnico: Relatório de experimentos de campo na Mina do Salobo (RE-
SENDE FILHO et al., 2020);

– Pedido de patente de invenção: Dispositivo e método para lançamento de etiquetas
eletrônicas sobre rocha desmontada a partir de um veı́culo aéreo não tripulado (RE-
SENDE FILHO et al., 2021).

• Investigação em Fotogrametria:

– Resumo de artigo: Investigation on Photogrammetry and LiDAR Models for Ca-

ves/Mines 3D Reconstruction (RESENDE FILHO et al., 2019);

– Relatório técnico: Dispositivo robótico para inspeção de ambientes restritos e con-
finados (FREITAS et al., 2020a);

– Artigo de periódico: Towards semi-autonomous robotic inspection and mapping in

confined spaces with the EspeleoRobô (AZPÚRUA et al., 2021).

• Inspeção Automatizada de Dutos:

– Relatório técnico: Inspeção da tubulação de rejeitos das usinas de Salobo (MAGNO
et al., 2019);

– Artigo de conferência: Deep Learning for Early Damage Detection of Tailing Pipes

Joints with a Robotic Device (RESENDE FILHO et al., 2020).
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2. REFERENCIAL TEÓRICO

Este Capı́tulo apresenta um breve referencial teórico relativo aos estudos de caso que são
abordados nesta dissertação. Trabalhos relacionados e mais especı́ficos são apresentados dentro
dos Capı́tulos que descrevem os estudos de caso, com o objetivo de mantê-los autocontidos.
Os conceitos apresentados na Seção 2.1 são relativos às plataformas utilizadas neste trabalho,
na Seção 2.2 são relativos ao Capı́tulo 3, enquanto os conceitos apresentados na Seção 2.3
são relativos ao Capı́tulo 4 e, por fim, os conceitos apresentados na Seção 2.4 são relativos ao
Capı́tulo 5.

2.1. Robótica móvel

Um robô móvel pode ser definido como um sistema mecânico capaz de se mover em
um ambiente de forma autônoma. Para este propósito, deve estar embarcado com (i) sensores,
que coletam informações a respeito do ambiente ao redor, além de determinar a sua localização,
(ii) atuadores que permitem que ele se mova, e (iii) um algoritmo que lhe possibilita calcular
e interpretar os dados coletados pelos sensores, e enviar comandos para os atuadores com o
objetivo de se realizar uma atividade (JAULIN, 2019).

Nas Subseções a seguir serão apresentados conceitos com relação aos robôs móveis
aéreos e terrestres, e em seguida são apresentados as especificações dos dispositivos utilizados
nesse trabalho: o Inspire 1 e o EspeleoRobô.

2.1.1. Robôs móveis aéreos

Os robôs móveis aéreos (Figura 2.1) apresentam diversas nomenclaturas, sendo comu-
mente conhecidos como drones, Aeronave Remotamente Pilotada (do inglês Remotely Piloted

Aircraft, RPA), Aeronave não Tripulada (do inglês Unmanned Aircraft, UA), Veı́culo Aéreo
não Tripulado (do inglês Unmanned Aerial Vehicle, UAV) e Sistemas Aéreos não Tripulados
(do inglês Unmanned Aerial Systems, UAS) (TANG e SHAO, 2015). Nas regulamentações bra-
sileiras, regidas pela Agência Nacional de Aviação Civil - ANAC (2020) e Departamento de
Controle do Espaço Aéreo - DECEA (2020), os termos mais utilizados são: RPAs e UAs.

As RPAs, dentre as suas inúmeras classificações, podem ser categorizadas em dois gran-
des grupos baseados no formato de suas asas (TANG e SHAO, 2015) e (LEE e CHOI, 2016):

• Asas fixas: são equipamentos similares a aviões. Graças às asas fixas, a decolagem e o
pouso são realizados na horizontal;

• Asas rotativas: são equipamentos similares a helicópteros ou autogiros. A decolagem e o
pouso para estes modelos são realizados na vertical.
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Figura 2.1: Exemplo de drone.
Fonte: DJI (2020b).

Os drones estão cada vez mais populares no dia-a-dia das pessoas. Nos últimos anos,
o desenvolvimento de RPAs cresceu rapidamente, criando um mercado com drones de diver-
sos formatos, tamanhos e capacidades (COLOMINA e MOLINA, 2014). Este crescimento,
concomitante com a evolução da Indústria 4.0, alavancou a popularidade destes dispositivos.
Atualmente os drones destacam-se na área de sensoriamento remoto. Tang e Shao (2015) in-
troduzem o termo Sensoriamento Remoto por Drones, de forma a distinguir o que pode ser
realizado por um drone daquilo que é feito com tecnologias tradicionais, tais como satélites
e aviões. Dentre as vantagens do uso de drone perante aos outros métodos, pode-se destacar:
maior flexibilidade, coleta em tempo real e menor custo.

Outros exemplos de utilização de drones podem ser vistos em atividades de resgaste e
sobrevivência (SHAHMORADI et al., 2020), planejamento e gestão urbana (BILJECKI et al.,
2015) e monitoramentos ambientais e ecológicos (LEE e CHOI, 2016). Também podem ser
vistos em aplicações em escalas industriais, como na agricultura (ELIJAH et al., 2018), óleo e
gás (SHAHMORADI et al., 2020), mineração (LEE e CHOI, 2016), entre outras.

2.1.2. Robôs móveis terrestres

Os robôs móveis terrestres, geralmente, possuem mecanismos de locomoção inspira-
dos na natureza, tais como rastejar, deslizar, correr, andar, entre outros. Podem, também,
se locomover a partir de rodas, método que apresenta alta eficiência em solos planos (SI-
EGWART et al., 2011). Além disso, os robôs podem ser desenvolvidos em sistemas hı́bridos
de locomoção, como por exemplo o ANYmal (Figura 2.2), que é um robô que possui pernas e
rodas (COXWORTH, 2020).

Neste trabalho, dentre os tipos de locomoção, são destacados os de pernas e os de rodas.
Os robôs de pernas são caracterizados por uma série de pontos de contatos entre o robô e o
solo. O ponto chave da utilização das pernas incluem adaptabilidade e manobrabilidade em
terrenos acidentados. Além disso, o robô é capaz de cruzar buracos, desde que não exceda o seu
alcance, e manipular objetos com grande habilidade. As principais desvantagens da locomoção
por pernas incluem alto consumo energético e alta complexidade mecânica: as pernas podem ter
vários graus de liberdade, devem ser capazes de sustentar o peso total do robô, além de levantar
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Figura 2.2: Exemplo de robô terrestre hı́brido.
Fonte: Coxworth (2020).

e abaixar, e, por fim, devem transmitir forças em várias direções diferentes (SIEGWART et al.,
2011).

Os robôs de rodas são os robôs mais populares na robótica móvel. Este sistema de
locomoção apresenta alta eficiência, e geralmente não apresenta problemas de equilı́brio, uma
vez que os robôs são projetados para que as rodas sempre estejam em contato com solo. Os
maiores problemas dos problemas com rodas se concentram na tração, na capacidade de ma-
nobra e controle do robô que são limitadas e/ou determinadas pelas configurações de rodas dos
robôs (SIEGWART et al., 2011).

2.1.3. Inspire 1

A RPA Inspire 1 (DJI, Nanshan) (Figura 2.3) é um quadrorotor comercial que tem como
principais caracterı́sticas: peso de 3 kg, autonomia de aproximadamente 18 minutos, velocidade
máxima de 22 m/s, máxima resistência a velocidade de vento de 10 m/s e peso máximo de
decolagem de 3,5 kg (DJI, 2020a).

Figura 2.3: Drone Inspire 1.
Fonte: Loja Drone Mania (2020).

A Figura 2.4 apresenta o diagrama com os principais componentes do Inspire 1. Além do
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GPS, este drone conta com uma Unidade de Medição Inercial (do inglês Inertial Measurement

Unit, IMU), um magnetômetro, dois sonares e uma câmera monocular. Estes sensores são
utilizados para efetuar o controle da RPA e garantir a segurança de voo.

Figura 2.4: Principais componentes do Inspire 1.
Fonte: Adaptado de DJI (2021).

2.1.4. EspeleoRobô

O EspeleoRobô (Figura 1.5) é uma plataforma robótica de pequenas dimensões que é
utilizada na inspeção de espaços confinados. O robô, inicialmente, foi desenvolvido para ser uti-
lizado como uma ferramenta teleoperada na inspeção de cavernas, baseando-se no robô RHEX
(Boston Dynamics, Waltham) que apresenta configurações com seis pés. Nos últimos anos, o
EspeleoRobô passou por diversas alterações e atualmente é uma plataforma modular, possui di-
ferentes sistemas de locomoção e, além disso, é capaz de fazer missões autônomas (AZPÚRUA
et al., 2021).

Dentre as suas principais caracterı́sticas destacam-se: peso de 25 kg, autonomia de apro-
ximadamente 4 h com carga útil de 5 kg, comunicação sem fio de 900 MHz com antena dire-
cional ou rede 4 G e com fio (250 m), dimensões de 0,28 x 0,52 x 0,7 m e proteção à água e
particulados (IP67). A Figura 2.5 apresenta o diagrama com os principais componentes embar-
cados do EspeleoRobô, não se limitando a estes, uma vez que os sensores utilizados no robô
variam de acordo com a tarefa de interesse (plataforma modular).
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Figura 2.5: Principais componentes do EspeleoRobô.
Fonte: Adaptado de Azpúrua et al. (2021).

2.2. Prototipagem rápida

Nas Subseções a seguir são apresentadas tecnologias que têm permitido a prototipa-
gem rápida e, consequentemente, têm tornado possı́vel o desenvolvimento de aplicações inte-
roperáveis e flexı́veis, que são essenciais para a robótica móvel.

2.2.1. Impressoras 3D

As impressoras 3D, também conhecidas como manufatura aditiva ou prototipagem rápida,
existem há décadas. O primeiro trabalho com impressora 3D foi feito em 1984 por Charles W.
Hull (BOGUE, 2013). Naquele momento, a tecnologia era muito cara e não se mostrou muito
atrativa à indústria e aos consumidores.

Até a década de 2010, a tecnologia de impressão 3D raramente era vista fora de fei-
ras e centros de desenvolvimento (LI et al., 2016). A partir de 2010, o cenário se mostrou
diferente e esta tecnologia atingiu uma expansão inimaginável. A impressão 3D foi compa-
rada a tecnologias disruptivas, como livros digitais e downloads de música (BERMAN, 2012).
Tal expansão se deve ao fato da impressão 3D apresentar um simples princı́pio de funciona-
mento, ao desenvolvimento de diferentes tipos desta tecnologia, à facilidade de integração com
computador, à presença de uma comunidade ativa e, acima de tudo, à simplicidade de tornar
um projeto realidade. Desde a sua invenção, a impressão 3D tem como princı́pio de funcio-
namento um processo de manufatura aditivo, em que os produtos são construı́dos camada por
camada, por meio de uma série de seções transversais (BERMAN, 2012). As impressoras 3D
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podem ser de diferentes tipos, dos quais destacam-se as de extrusão de material (Figura 2.6),
fotopolimerização de cuba, jateamento de material, ligação de material granular e laminação de
folha (LI et al., 2016). A maioria das tecnologias de impressão 3D permitem integração com
software de Desenho Assistido por Computador (do inglês Computer-Aided Design, CAD) e
com outros arquivos digitais. No final do processo de desenvolvimento de um produto, o pro-
jetista simplesmente clica no botão “imprimir”e escolhe uma impressora aplicável (BERMAN,
2012). Além disso, hoje existem diversos sites com repositórios de desenhos, os quais usuários
podem compartilhar e, até mesmo comercializar, projetos entre si.

Figura 2.6: Exemplo de impressora 3D do tipo de extrusão de material.
Fonte: Dring (2021).

Não apenas para pequenas aplicações, a tecnologia de impressão 3D está cada vez mais
conquistando o seu espaço nos setores manufatureiros, criando novas oportunidades para a
fabricação de itens, que no passado eram impossı́veis de serem fabricados, e aumentando a
qualidade daqueles que já eram produzidos (ATTARAN, 2017).

2.2.2. Microcontroladores

Microcontroladores podem ser definidos como pequenos computadores, desenvolvi-
dos em um circuito integrado, contendo o núcleo do processador, memória e periféricos pro-
gramáveis de entrada e saı́da. Eles são uma excelente forma para programar e controlar eletrô-
nicos. Alguns exemplos de microcontroladores são as placas Wiring, o PIC, o Basic Stamp, o
Arduino, Raspberry, entre outros (NUSSEY, 2013). Dentre os modelos no mercado, uma das
tendências no desenvolvimento de código aberto é o microcontrolador Arduino (Figura 2.7) que
se destaca por ser uma plataforma de baixo custo e amplamente apoiada pela academia e pela
indústria (GONZÁLEZ e CALDERÓN, 2019). Isso se dá pelo fato do Arduino apresentar sim-
ples integração com o computador e ter comportamento facilmente alterado de acordo com a
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necessidade do usuário, o que seria muito mais difı́cil de ser feito nos outros microcontroladores
(NUSSEY, 2013).

Figura 2.7: Exemplo de Arduino.
Fonte: Net Computadores (2020).

2.3. Reconstrução 3D

As reconstruções 3D são hoje uma ferramentas essenciais na análise de estruturas, graças
à sua capacidade de examinar desde pequenos corpos até grandes ambientes (EULITZ e REISS,
2015). Diferentemente de outras representações, as reconstruções 3D permitem a navegação e
extração de informações tais como medidas ponto a ponto, volume, entre outras. Nas Subseções
a seguir, são apresentados os principais formatos de arquivos com informações 3D, os modelos
e os métodos utilizados na representação de ambientes.

2.3.1. Formatos de arquivos com informações 3D

Os principais formatos para a transferência de informação 3D são Imagem de Alcance
(do inglês Range Image), Imagens em Vermelho, Verde, Azul e Profundidade (do inglês Red,

Green, Blue, and Depth, RGB-D) e Nuvem de Pontos (do inglês Point Cloud). Segundo Besl
(1988), Imagem de Alcance é o arquivo em que cada pixel é representado num espaço 2D em
(x,y) apresenta um nı́vel z que representa a distância relativa entre eles (Figura 2.8).

Figura 2.8: Exemplo de dado no formato Imagem de Alcance.
Fonte: Besl (1988).
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De acordo com McGill et al. (2017), Imagens em RGB-D são arquivos nos quais as
câmeras são capazes de capturar tanto a imagem colorida em Vermelho, Verde e Azul (do inglês
Red, Green, and Blue, RGB), quanto a sua respectiva profundidade (Figura 2.9)

Figura 2.9: Exemplo de imagem colorida e sua respectiva profundidade.
Fonte: Lai et al. (2020).

Por fim, Nuvem de Pontos que é um conjunto de pontos no espaço, expresso em um
mesmo sistema de coordenadas x,y e z, que representam o formato dos objetos/ambientes (Fi-
gura 2.10).

Figura 2.10: Exemplo de dado em Nuvem de Pontos.
Fonte: Sneha S (2019).

2.3.2. Modelos para representação de ambientes

Segundo Burgard et al. (2016), a representação de ambientes naturais por meio de mo-
delos geométricos, pode ser realizada com Mapas de Elevação (do inglês Elevation Grids),
Grades 3D (do inglês 3D Grids) e Malhas (do inglês Mesh). Mapas de Elevação descrevem o
terreno como uma função h = f (x,y), os quais x e y são as coordenadas planares e h a elevação
correspondente. Os Mapas de Elevação são representados por meio de voxels (unidade unitária
de volume), conforme demonstrado na Figura 2.11.
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Figura 2.11: Representação de reconstrução 3D por meio de Mapa de Elevação.
Fonte: Triebel et al. (2006).

Nas Grades 3D os dados são representados diretamente em 3D sem uma projeção ou
referência em um plano 2D, preservando sua distribuição original e sem restringir a geome-
tria do ambiente (Figura 2.12). Contudo, o uso dessa representação apresenta alto consumo
computacional.

Figura 2.12: Ambiente aberto representado por Grades 3D.
Fonte: Burgard et al. (2016).

Finalmente, as Malhas são um conjunto de vértices, arestas e faces que definem a forma
de um objeto/ambiente poliédrico. A princı́pio, podem representar quaisquer combinações de
superfı́cie de uma forma compacta (Figura 2.13). Entretanto, na prática, esta representação
apresenta dificuldades em trabalhar em ambientes muito complexos, tais como terrenos aciden-
tados.
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Figura 2.13: Representação 3D de ambiente por meio de Malha.
Fonte: Burgard et al. (2016).

2.3.3. Métodos de reconstrução 3D

As reconstruções 3D podem ser realizadas a partir de dois métodos: passivos ou ativos.
Os métodos ativos interferem ativamente com a cena/objeto reconstruı́do, mecanicamente ou
radiometricamente, a fim de se obter o mapa de profundidade de interesse. Geralmente, são
utilizadas tecnologias Tempo de Voo (do inglês Time of Flight, ToF) e Luz Estruturada (do
inglês Structure Light) para essa metodologia.

Tempo de Voo é um método que opera com base no mesmo princı́pio de radares, me-
dindo o tempo que a radiação emitida por um transmissor leva para percorrer uma distância em
um meio (ZANUTTIGH et al., 2016). Os sensores (Figura 2.14) mais utilizados neste método
são LiDAR e Câmeras ToF.

(a) Puck (Velodyne, San Jose) (b) Basler Time-of-Flight (Basler, Ahrensburg)

Figura 2.14: Exemplo de sensores utilizados para leitura de Tempo de Voo.
Fonte: (a) Velodyne (2020), (b) Basler (2020).

A Luz Estruturada, parte do princı́pio da triangulação. Sua construção básica consiste
de um arranjo em que uma câmera e um projetor apresentam um ângulo α entre si, e ambos
apontam para um alvo (ZANUTTIGH et al., 2016), conforme ilustrado na Figura 2.15. O
sensor ativo, responsável pela detecção da profundidade, pode ser um laser infravermelho, uma
luz projetada ou luz codificada por cores.
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Figura 2.15: Exemplo de arranjo para o método Luz Estruturada.
Fonte: Adaptado de Cartola V. (2020).

Já os métodos passivos, são àqueles em que a aquisição de dados é realizada a partir
da aquisição da cena por meio de diferentes ângulos de visão a partir de vı́deos ou imagens.
Nessa técnicas, normalmente, são utilizadas luzes artificiais para minimizar oclusões na cena
de interesse. As informações coletadas são transformadas em 3D a partir da triangulação e cor-
respondência entre similares pontos nas imagens (BIANCO et al., 2013). Dentre esses métodos
destacam-se a Visão Estéreo e a Fotogrametria.

A Visão Estéreo é um metodologia composta por duas câmeras que se enquadram
parcialmente na mesma cena. Considerando que as câmeras são iguais, estão calibradas e
há sobreposição das imagens, é possı́vel estimar as coordenadas 3D de interesse através da
triangulação (ZANUTTIGH et al., 2016). A Figura 2.16 apresenta exemplo de câmera estéreo.

Figura 2.16: Exemplo de câmera estéreo.
Fonte: Stereo Labs (2020).

Já a Fotogrametria é uma metodologia que realiza a reconstrução 3D a partir de um
conjunto de imagens que apresentam sobreposições superiores a 80%. Pelo fato de utilizar
informações 2D (fotos), esta metodologia, comparado com os demais, apresenta maior custo
computacional. Para a reconstrução o fluxo básico (Figura 2.17) é: extração de caracterı́sticas
(LOW, 2004); correspondência entre as imagens (NISTER e STEWENIUS, 2006); corres-
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pondência entre as caracterı́sticas extraı́das (LOW, 2004); Estrutura do Movimento (do inglês
Structure from Motion, SfM) (MOULON et al., 2013); estimativa de profundidade (HIRSCH-
MULLER, 2005); criação da malha (JANCOSEK e PAJDLA, 2014); e, por fim, texturização
(LÉVY et al., 2002).

Figura 2.17: Fluxo básico da reconstrução 3D por fotogrametria.
Fonte: Adaptado de AliceVision Meshroom (2019).

2.4. Redes neurais artificiais

Redes Neurais Artificiais (do inglês Artificial Neural Networks, ANN) são técnicas com-
putacionais que apresentam modelo matemático inspirado na estrutura neural de organismos
inteligentes, que são capazes de realizar aprendizado, bem como reconhecimento de padrões.
Nas Subseções a seguir, são apresentados os conceitos de Rede Neural Convolucional, Aprendi-
zado por Transferência, Mapas de Ativação de Classe e Rede Neural Convolucional de Disparo
Único.

2.4.1. Rede neural convolucional

Na identificação de padrões por imagens, a ANN normalmente utiliza um número muito
grande de neurônios, dificultando seu uso prático (AGHDAM e HERAVI, 2017; BUDUMA
e LOCASCIO, 2017). Para Aghdam e Heravi (2017), o uso da Rede Neural Convolucional
(do inglês Convolutional Neural Network, CNN) é a solução para reduzir esse alto número de
neurônios e parâmetros necessários para a classificação de imagens. Além disso, uma CNN é
uma rede multicamada projetada especificamente para reconhecer formas bidimensionais com
um alto grau de conversão, dimensionamento, inclinação e outras formas de distorção (HAY-
KIN, 2009). A Figura 2.18 apresenta um esquema de CNN simples para extrair informações e
classificar uma imagem com base na rede LeNet, introduzido por LeCun et al. (1998). Também
pela Figura 2.18, nota-se que é possı́vel dividir as CNNs em dois grupos: nas (i) camadas de
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convolução, que são compostas pelas convoluções e subamostragens, e nas (ii) camadas de
classificação que são compostas pelas conexões completas.

Figura 2.18: Esquema ilustrativo de uma rede neural convolucional.
Fonte: Adaptado de LeCun et al. (1998).

As camadas de convolução são responsáveis por duas caracterı́sticas: aprendizado de
parâmetros invariantes na translação, o que as permite ter grande poder de generalização com
poucas amostras, e aprendizado de hierarquias espacias de padrões, o que possibilita que as
camadas convolucionais extraiam mais padrões a cada camada, permitindo que as redes apren-
dam, com eficiência, conceitos visuais cada vez mais complexos e abstratos. Enquanto isso,
as camadas de classificação são responsáveis pelo aprendizado de padrões globais, ou seja,
elas consideram toda a informação recebida, como por exemplo, todos os pixels em uma ima-
gem (CHOLLET, 2018).

2.4.2. Aprendizado por transferência

Para Zhang (2011), à medida que novas tarefas complexas de classificação surgem, mui-
tas vezes precisamos de um grande número de amostras para treinamento a fim de obter um bom
desempenho de classificação. Para as pessoas, quanto mais uma nova tarefa estiver relacionada
à uma experiência anterior, mais facilmente ela será dominada. De forma a imitar esse tipo de
aprendizado, a técnica Aprendizado por Transferência (do inglês Transfer Learning, TL) repre-
senta o progresso no sentido de tornar o Aprendizado de Máquina (do inglês Machine Learning,
ML) tão eficiente quanto o aprendizado humano (TORREY e SHAVLIK, 2009).

O TL é um método de ML no qual um modelo desenvolvido para uma tarefa é reuti-
lizado como ponto de partida para um modelo em uma segunda tarefa (BROWNLEE, 2017).
Para Goodfellow et al. (2016), TL refere-se à situação em que aquilo que foi aprendido em
um ambiente é explorado para melhorar a generalização em outro ambiente. A Figura 2.19
apresenta três motivos pelos quais a TL pode melhorar o aprendizado: desempenho superior no
inı́cio do aprendizado, uma inclinação mais acentuada na curva de aprendizado e desempenho
assintótico superior.

Outra técnica que pode ser utilizada para melhorar o desempenho da ANN é conhecida
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Figura 2.19: Comparação dos desempenhos de uma rede neural com e sem aprendizado por
transferência.

Fonte: Adaptado de Torrey e Shavlik (2009).

como Aumento de Conjunto de Dados (do inglês Dataset Augmentation, DA). Esta metodolo-
gia é utilizada quando o conjunto de dados é restrito e, por isso, adicionam-se dados sintéticos
ao teste de treinamento. Essa abordagem é eficaz, principalmente, para o problema de reconhe-
cimento de objetos (GOODFELLOW et al., 2016).

2.4.3. Mapas de ativação de classe

A maioria das CNNs é treinada com rótulos a nı́vel da imagem, de forma que as camadas
convolucionais aprendem representações hierárquicas para tomar suas decisões de classificação
(BUDUMA e LOCASCIO, 2017). No entanto, trabalhos recentes, como Bazzani et al. (2016),
mostram que as CNNs têm a capacidade de localizar objetos nas imagens sem informações
prévias.

Para aprender recursos profundos para localização discriminativa, Zhou et al. (2016)
propuseram uma técnica para gerar Mapas de Ativação de Classe (do inglês Class Activation

Mapping, CAM) utilizando o Agrupamento Médio Global (do inglês Global Average Pooling,
GAP) na CNN (Figura 2.20). O CAM permite a visualização das pontuações e pesos de classe
previstas em qualquer imagem, destacando as partes discriminativas dos objetos detectadas pelo
modelo da CNN. O CAM da classe c é fornecido por:

Mc(x,y) = ∑
k

wc
k fk(x,y) (2.1)

os quais: wc
k é o peso correspondente à classe c para a unidade k, e fk(x,y) que representa a

ativação da unidade k na última camada convolucional no local espacial (x,y). Esses valores são
obtidos projetando de volta os pesos da camada de saı́da nos mapas de recursos convolucionais.
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Figura 2.20: Exemplo de uma saı́da por mapas de ativação de classe.
Fonte: Adaptado de Zhou et al. (2016).

2.4.4. Rede neural convolucional de disparo único

Para sistemas de detecção de objetos em tempo real, a rede You Only Look Once (YOLO)
é considerada o estado da arte por ser mais rápida e precisa quando comparado aos outros siste-
mas (REDMON e FARHADI, 2020). A YOLO é uma Rede Neural Convolucional de Disparo
Único (do inglês Single Shot Detector, SSD) baseada em uma única rede neural que divide a
imagem em regiões e prevê caixas delimitadoras e probabilidades para cada região (LIANQIAO
et al., 2019) (Figura 2.21). A detecção de objetos é reformulada como um único problema de
regressão diretamente dos pixels da imagem para as coordenadas da caixa delimitadora e as
probabilidades da classe (REDMON et al., 2016).

Figura 2.21: Predição com YOLO.
Fonte: Adaptado de Redmon et al. (2016).

35



A YOLOv3, que é uma das versões mais recentes do sistema, possui 53 camadas con-
volucionais, sendo capaz de prever em três dimensões: caixa delimitadora, objetividade e pre-
visões de classe. A rede consegue obter informações mais significativas a partir da reutilização
dos mapas de informações de iterações anteriores, aplicando a elas blocos residuais de convo-
lução. Esta operação é realizada de maneira rápida e precisa (REDMON e FARHADI, 2020;
REDMON et al., 2016).

Para medir a eficácia da detecção na YOLO, a Precisão Média Ponderada (do inglês
mean Average Precision, mAP) é usada como indicador, o qual representa um valor médio na
curva de precisão (do inglês recall) calculada sobre o conjunto analisado (KHARCHENKO
e CHYRKA, 2018).

2.5. Considerações sobre os Referenciais Teóricos

Neste Capı́tulo foram introduzidos conceitos teóricos a respeito dos estudos de caso que
são abordados neste trabalho. A Seção 2.1 apresentou o conceito de robótica móvel, introduziu
as definições de robôs aéreos e terrestres, e descreveu os dispositivos utilizados neste traba-
lho. A Seção 2.2 apresentou tecnologias que auxiliam no desenvolvimento de prototipagem
rápida: impressoras 3D e microcontroladores, que em conjunto foram a base do desenvolvi-
mento do estudo de caso de Dispersão de Etiquetas Eletrônicas. A Seção 2.3 abordou os con-
ceitos básicos para o entendimento de reconstruções 3D. Foram explicados os formatos de ar-
quivos com informações 3D, os modelos para representação de ambientes e, por fim, os métodos
para efetuar uma reconstrução. Esses conceitos são importantes no entendimento do estudo de
caso da Investigação em Fotogrametria. A Seção 2.4 apresentou os conceitos necessários para o
entendimento do sistema desenvolvido no estudo de caso de Inspeção Automatizada de Dutos.
Foram abordados os conceitos de redes neurais artificiais, redes neurais convolucionais, apren-
dizado por transferência, mapas de ativação de classe e redes neurais convolucionais de disparo
único.
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3. ROBÔS AÉREOS PARA DISPERSÃO DE ETIQUETAS
ELETRÔNICAS DE RASTREAMENTO DE MINÉRIO

Este Capı́tulo apresenta uma proposta de desenvolvimento e avaliação em campo de
um sistema de hardware e software para melhorar o controle de rastreabilidade do minério de
cobre na Mina do Salobo (Marabá - PA) através do lançamento de etiquetas eletrônicas de
Identificação por Radiofrequência (do inglês Radio Frequency Identification, RFID). São des-
critos, também, os resultados apresentados no relatório técnico: Relatório de experimentos de

campo na Mina do Salobo (RESENDE FILHO et al., 2020) e no pedido de patente de invenção:
Dispositivo e método para lançamento de etiquetas eletrônicas sobre rocha desmontada a par-

tir de um veı́culo aéreo não tripulado (RESENDE FILHO et al., 2021), frutos de trabalhos
em colaboração com os coautores indicados nos documentos citados. Este Capı́tulo, diferen-
temente dos demais capı́tulos dessa dissertação, possui viés de inovação tecnológica, portanto,
em seu decorrer são descritos o protótipo desenvolvido e a metodologia de operacionalização
da atividade.

Salobo é o segundo projeto de cobre desenvolvido pela Vale no Brasil. A mina está
localizada em Marabá, sudeste paraense, e entrou em operação em novembro de 2012. O
empreendimento tem capacidade nominal estimada de 100 mil toneladas anuais de cobre em
concentrado (VALE, 2020).

Em termos gerais, o fluxo de produção (Figura 3.1) de cobre em Salobo pode ser descrito
em: o minério é lavrado e transportado por caminhões fora-de-estrada até a britagem, onde tem
o seu tamanho reduzido. Em seguida, esse minério chega ao roller press, um equipamento
formado por dois rolos que giram em sentidos opostos, fragmentando o produto graças à ação
de rotação e pressão do equipamento. Logo após, o minério passa por moinhos e uma bateria
de ciclones até chegar às áreas de flotação e filtragem, etapa final do processo que resulta em
um concentrado que varia de 36% a 40% de cobre (VALE, 2020). Dentre esses processos,
um dos mais importantes da cadeia de produção do cobre é a flotação, devido ao seu impacto
direto na concentração de saı́da. Segundo os relatórios gerenciais de produção da planta, o
minério de cobre em Salobo é extraı́do com um teor médio de 0,8% e, ao final do processo do
beneficiamento, seu teor aumenta entre 45 e 50 vezes.

Para garantir que o processo de flotação atinja o teor adequado, é crucial que se conheça
a composição quı́mica do minério de entrada, assim como é importante que se faça a esco-
lha adequada dos reagentes do processo. Quaisquer variações inesperadas podem impactar na
eficiência do beneficiamento, resultando em um concentrado com teor inferior ao esperado.
Ressalta-se, ainda, que o minério de cobre extraı́do em Salobo contém grande presença de
substâncias deletérias, contaminantes presentes no sulfeto, e estas, por sua vez, representam um
risco no processo de flotação.

Visando minimizar esse risco de processo, foi proposto pelo Departamento de Operações
Cobre Norte o rastreamento do fluxo de massa de cada polı́gono alimentado no britador, de
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Figura 3.1: Fluxo de produção de Salobo.
Fonte: O autor.

forma a permitir a antecipação de ajustes na flotação antes da entrada do minério no processo,
garantindo que o produto seja concentrado no teor desejado. Para o rastreamento, foi proposta
a utilização de etiquetas eletrônicas RFIDs Dienamics (Metso, Helsinque) apresentadas na Fi-
gura 3.2. Nas etiquetas são carregadas um código identificador, o qual contém as relações de
composições quı́micas para cada região dentro do polı́gono.

Figura 3.2: Exemplo das etiquetas eletrônicas Dienamics.
Fonte: Serisier (2020).

Inicialmente, as etiquetas RFID eram colocadas nas regiões de interesse antes mesmo
da detonação. Contudo, observou-se que grande parte delas, cerca de 75 a 80%, era destruı́da
no momento da explosão. Em seguida, foi proposta a colocação das etiquetas pós detonação
de forma manual, com um funcionário se deslocando na região do detonado e deixando os
dispositivos manualmente. Esta última atividade foi suspensa após serem detectados riscos de
acidentes.

Neste contexto, viu-se a oportunidade de realizar esta atividade com o auxı́lio de RPA.
Uma RPA pode sobrevoar a região do detonado e lançar as etiquetas sem expor funcionários.
Portanto, este trabalho consiste em desenvolver um dispositivo para armazenamento das etique-
tas eletrônicas, controlado remotamente, e que seja anexo a uma RPA, substituindo a atividade
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que hoje é manual. Além de desenvolver o dispositivo, espera-se deste trabalho definir a me-
todologia de operação da RPA, garantindo que esta atividade seja realizada com segurança e
eficiência.

3.1. Trabalhos relacionados

Segundo Tang e Shao (2015), a disponibilidade de RPAs com múltiplos tamanhos, for-
matos e aplicações aumentou significativamente nas últimas décadas, assim como seu uso se
popularizou para civis. As RPAs têm, principalmente, substituı́do aplicações de sensoriamento
remoto que no passado eram feitas por satélites e pequenos aviões, tais como: pesquisas em
florestas, mapeamento de lacunas dossel, fotogrametrias, rastreamento de queimadas e desma-
tamento.

Nas áreas de ecologia e agricultura, consideradas uma das precursoras na utilização
de RPAs, atividades mais complexas têm sido desenvolvidas. Por exemplo, Freitas et al.

(2020b) apresentam metodologia que utilizam RPAs como uma plataforma de apoio ao con-
trole biológico de pragas. Neste caso, o RPA é responsável por fazer uma varredura em áreas de
diversos formatos, lançando cápsulas com inimigos naturais em pontos estratégicos. O uso do
RPA proporcionou maior eficiência no controle de pragas e economia na utilização das cápsulas.

Existem estudos com a aplicação de RPAs também no setor da mineração. Lee e Choi
(2016) apresentam o conjunto de aplicações desenvolvidas subdividindo-as em pesquisas de
mineração, operação, perfuração e detonação, segurança, construção e outras, demonstrando
que as RPAs estão se tornando cada vez mais utilizadas também nesse ramo. Shahmoradi et al.

(2020) apresentam uma classificação para as aplicações de RPAs, subdividindo-as em três gran-
des áreas: minas a céu aberto, minas subterrâneas e minas abandonadas. Em seguida, os autores
apresentam as RPAs e sensores embarcados mais adequados para cada tipo de operação, bem
como os desafios associados à operação na mineração, tais como poeira, umidade, luminosi-
dade, entre outros.

Nascimento et al. (2017) apresentam um exemplo de RPA aplicado à inspeção de trans-
portadores de correia. Graças à extensão dos transportadores de correia e o grande impacto que
eles têm na cadeia produtiva do minério, os autores propuseram realizar a inspeção de forma au-
tomatizada, embarcando alguns sensores em uma RPA que, por sua vez, voaria sobre a correia
para monitorá-la e encontrar defeitos.

Azpúrua et al. (2019) apresentam um desenvolvimento aplicado que utiliza RPA para
criar mapas digitais de elevação magnética, com o objetivo de detectar corpos metálicos soterra-
dos, ou até mesmo para investigação mineral. Os mapas são obtidos a partir de voos autônomos
e cooperativos entre diferentes dispositivos. A metodologia proposta em comparação com
métodos tradicionais (feitos em aeronaves tripuladas) é mais barata e menos perigosa.

Neste trabalho, é proposto o desenvolvimento de um dispositivo para armazenamento de
etiquetas eletrônicas RFID que seja acoplado a uma RPA capaz sobrevoar os materiais detona-
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dos e de lançá-las em locais especı́ficos. A realização desta atividade garante maior estabilidade
do processo de flotação da Usina do Salobo, bem como a eliminação de uma atividade com risco
de acidentes.

3.2. Desenvolvimento do protótipo

O desenvolvimento do protótipo pode ser dividido em duas partes: criação da estrutura
mecânica do lançador de etiquetas eletrônicas e a implementação da eletrônica neste. É im-
portante ressaltar que o protótipo foi projetado para ser uma prova de conceito. A Figura 3.3
apresenta visão geral da estrutura proposta. Nas Subseções a seguir são apresentados mais
informações a respeito dos componentes utilizados e das etapas de desenvolvimento.

Figura 3.3: Visão geral do protótipo desenvolvido.
Fonte: O autor.

3.2.1. Estrutura mecânica

A estrutura mecânica foi desenvolvida nos laboratórios do Instituto Tecnológico Vale
(ITV). Os requisitos de projeto para esta etapa foram: ter a capacidade de voar com 10 etiquetas
eletrônicas e ser o mais leve possı́vel para ser embarcada em um drone.

Como as etiquetas eletrônicas apresentam formato de um disco, optou-se por desenvol-
ver um reservatório com formato de um cilindro, pois este formato permite que as etiquetas
sejam empilhadas. Na parte inferior do cilindro foi instalada uma junta rotativa, que ao ser mo-
vimentada possibilita o lançamento de uma etiqueta por vez. Além disso, foi desenvolvida uma
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peça para acoplar este cilindro com as etiquetas eletrônicas ao drone. A Figura 3.4 apresenta
as visões isométricas da estrutura. No Apêndice A - Figura A1 são expostas todas visões e
dimensões da estrutura mecânica.

Figura 3.4: Projeto do lançador de etiquetas eletrônicas.
Fonte: Adaptado de acervo ITV.

Após finalizado o projeto, a peça foi impressa em náilon por uma impressora 3D e
acoplada ao Inspire 1, RPA descrita na Subseção 2.1.3 e apresentada na Figura 2.3. Este drone
foi selecionado devido a sua capacidade de voar com cargas externas e por ser o mais robusto
dentre os disponı́veis no ITV. A Figura 3.5 demonstra o lançador de etiquetas acoplado a parte
traseira do Inspire 1, bem como, indica os locais de entrada e saı́da das etiquetas.

Figura 3.5: Lançador de etiquetas acoplado a traseira do Inspire 1.
Fonte: O autor.

3.2.2. Desenvolvimento e implementação da eletrônica

A implementação da eletrônica tem como objetivo promover a movimentação da parte
inferior do lançador de etiquetas, permitindo que estas sejam disparadas sempre que necessário.
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Como forma de estabelecer a prova de conceito para o desenvolvimento, priorizou-se a aplicação
de um acionamento simples. Neste módulo eletrônico foram utilizados uma placa Arduino
UNO R3 (Arduino, Somerville) e um servo motor, modelo 9g SG90 (TowerPro, Ponte Vedra),
ambos alimentados por uma bateria portátil, que fornece 5 V de tensão e 1 A de corrente. A Fi-
gura 3.6a apresenta diagrama elétrico do protótipo e a Figura 3.6b apresenta o módulo eletrônico
acoplado ao drone.

(a) Diagrama elétrico do protótipo desenvolvido

(b) Módulo eletrônico acoplado ao drone

Figura 3.6: Implementação eletrônica do dispersor de etiquetas eletrônicas.
Fonte: O autor.

O movimento do lançador, a princı́pio, foi programado para ser repetido a cada 20 segun-
dos, tempo considerado suficiente para que o drone se desloque entre as posições de interesse.
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3.3. Validações do dispositivo

Esta Seção apresenta os procedimentos realizados durante os testes e validações do dis-
positivo lançador de etiquetas.

3.3.1. Validações em ambiente representativo

Inicialmente, foram realizados testes em um ambiente representativo para analisar o
comportamento do drone, tanto em voos manuais, como em voos automatizados, após embarcar
o protótipo com os seus itens.

Primeiramente, voou-se o drone em manual, a fim de analisar a sua estabilidade estática
e dinâmica, isto é, foi verificado se o Inspire 1 conseguiria se manter parado quando esti-
vesse pairando e se sua manobrabilidade se manteria ao realizar movimentos no ar. Para esta
validação, os voos foram realizados em Ouro Preto em um campo aberto. A Figura 3.7 apre-
senta local de voo e destaque amarelo no drone durante voo. A RPA não apresentou dificuldades
para voar com o carregamento.

Figura 3.7: Validação em ambiente representativo.
Fonte: O autor.

Em seguida, voos automatizados em modo waypoint foram realizados. Nesta modali-
dade, o drone voa sobre uma área parando em alguns pontos-chaves, os quais foram escolhidos
de forma a simular um polı́gono de detonação. A programação da rota foi feita através do soft-
ware Litchi1. Estes testes também foram bem sucedidos, validando a operação do drone na
mina.

Com o sucesso dos voos manuais e automatizados no ambiente representativo foi possı́vel
obter 5 no Nı́vel de Maturidade Tecnológica (do inglês Technology Readiness Level, TRL) pro-
posto pela Empresa Brasileira de Pesquisa e Inovação Industrial (EMBRAPII)2.

1https://flylitchi.com/
2https://embrapii.org.br/wp-content/images/2019/05/0705 Orientacao Operacional 02-

19.pdf
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3.3.2. Validações em ambiente de mina

A validação em ambiente de mina foi realizada na Mina do Salobo. No primeiro mo-
mento, seguiu-se a mesma metodologia dos testes realizados previamente com a execução de
voos manuais e em seguida voos automatizados em modo waypoint, programados pelo software
Litchi.

Devido à grande diferença entre os ambiente e aos riscos da operação em ambiente
de mina, as validações na Mina do Salobo foram dividas em duas etapas: i) revalidação do
dispositivo lançador de etiquetas em voo sobre área aberta e ii) voo sobre materiais detonados.

3.3.2.1. Revalidação do dispositivo lançador de etiquetas

A revalidação em área aberta foi realizada para garantir que tudo estaria funcionando
conforme os testes e validações anteriores. Para a execução desta atividade, seguiu-se a mesma
metodologia dos testes anteriores: voos manuais seguidos de voos automatizados em modo
waypoint.

No voo manual (Figura 3.8) o drone não apresentou nenhum problema com relação
a sua estabilidade dinâmica, permitindo a execução do voo automatizado. Ao iniciar o voo
programado, observou-se uma variação entre as coordenadas do GPS fornecido pela equipe de
topografia da mina com as coordenadas do GPS do drone. Essa diferença é explicada pelo fato
dos sistemas de coordenadas utilizados serem diferentes, enquanto a mina utiliza o sistema de
GPS com Posicionamento Cinemático em Tempo Real (do inglês Real Time Kinematic, RTK),
o drone utiliza o GPS convencional. Como os sistemas RTK são mais precisos, precisão na
ordem de centı́metros, eles foram adotados como referência.

Figura 3.8: Revalidação do dispositivo lançador de etiquetas em campo aberto. Caixa amarela
apresentando foco no drone em voo.

Fonte: O autor.

Portanto, para dar sequência aos testes, foi necessário analisar a diferença entre os siste-
mas de coordenadas do GPS da mina e da RPA. Para tal, foram comparadas coordenadas entre
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os dois sistemas, conforme pode ser verificado na Tabela 3.1.

Tabela 3.1: Diferença de posição entre os sistemas de coordenadas da mina e do drone.

Ponto
medido

Drone RTK Diferença
Latitude

[m]
Longitude

[m]
Latitude

[m]
Longitude

[m]
Latitude

[m]
Longitude

[m]

1 551.953 9.360.704 552.007,432 9.360.735,578 54,432 31,578
2 551.956 9.360.705 552.010,647 9.360.735,890 54,647 30,890
3 551.959 9.360.705 552.013,436 9.360.736,162 54,436 31,162
4 551.963 9.360.706 552.017,626 9.360.736,595 54,626 30,595
5 551.967 9.360.707 552.021,786 9.360.737,001 54,786 30,001
6 551.971 9.360.708 552.026,000 9.360.737,412 55,000 29,412
7 551.975 9.360.707 552.030,058 9.360.737,848 55,058 30,848

Fonte: O autor.

A partir dos valores da Tabela 3.1, nota-se um padrão no erro entre os sistemas de
coordenadas. Os valores obtidos para a diferença tanto da latitude como da longitude podem ser
caracterizados como erros sistemáticos, uma vez que estes dados apresentam baixa dispersão.
Para atuar na correção do erro, calculou-se os valores médios da diferença para a latitude e
longitude, que foram, respectivamente, 54,712±0,249 m e 30,641±0,727 m. Na sequência,
os valores médios das diferenças foram somados para cada par de coordenadas da RPA, a fim
de minimizar o impacto do erro com o GPS RTK.

Em seguida, foi realizado um teste em campo aberto para analisar as correções efetuadas.
No teste observou-se que o erro de posicionamento do GPS da RPA com relação as coordenadas
do GPS RTK reduziu consideravelmente, atingindo valores médios inferiores a 1 m de raio,
validando o voo automatizado na mina. Ainda neste teste, avaliou-se a área de dispersão que
a etiqueta eletrônica atingia ao ser lançada, variando-se a altura. Foram testadas as alturas de
5, 10 e 15 m e observou-se, para todas alturas, que o raio de dispersão foi inferior a 50 cm.
Segundo a equipe técnica responsável pela mineralogia da Mina do Salobo, o minério de cobre
apresenta caracterı́sticas semelhantes em um raio de até 2 m e, portanto, um raio de dispersão
apresentado nas alturas analisadas atendem as necessidades para o rastreio do minério. Após
estas constatações, a revalidação foi considerada como concluı́da, habilitando a RPA para a
execução de voos sobre material detonado.

3.3.2.2. Voo sobre material detonado

A realização do voo sobre materiais detonados é a etapa mais importante neste pro-
cesso, pois ela é responsável pela validação desta prova de conceito e também pela definição de
parâmetros de operacionalização.

Para a criação da rota de voo, foi realizada uma visita às pilhas de materiais detonados
(Figura 3.9a). Durante a visita, observou-se que o pico do material detonado atinge, no máximo,
a altura de 15 m, portanto, por questões de segurança adotou-se voar 10 m acima do material
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detonado, ou seja, a 25 m de altura. Para cobrir toda a área do polı́gono (aproximadamente
2500 m2) e garantir a rastreabilidade do minério, a distância dos waypoints foi configurada para
20 m. Por fim, a velocidade de voo foi ajustada para 3 m/s de forma a manter a estabilidade
dinâmica da RPA. Considerando a distância entre os pontos-chaves e a velocidade configurada,
a RPA pode executar a rota em tempos inferiores a 4 minutos. Em seguida, o plano de voo
(Figura 3.9b) foi configurado considerando estes parâmetros.

(a) Pilha de material recém detonado (b) Plano de voo para o teste

Figura 3.9: Visita à área da mina e criação de rota.
Fonte: O autor.

Antes da realização do voo automatizado, um voo em modo manual foi realizado para
se analisar o comportamento do drone dentro da mina. Observou-se neste teste que o mag-
netômetro do drone estava instável devido à grande interferência eletromagnética do minério de
cobre, que é um material ferromagnético.

Tendo ciência desta condição, considerou-se realizar o voo em modo automático, quando
a medida do magnetômetro estabilizasse. Porém, caso algum distúrbio, tal como instabilidade
durante o voo, perda de rota ou intermitência do sinal de comunicação fosse detectado, a RPA
teria o seu modo de voo alterado para manual e os testes seriam abortados.

Sendo assim, a rota foi transferida à RPA. Apesar das interferências eletromagnéticas,
o voo automatizado (Figura 3.10) foi realizado com sucesso. A atividade foi repetida mais três
vezes para garantir robustez e validar os padrões estipulados. Uma vez que a atividade obteve
êxito em sua realização, o protótipo desenvolvido atingiu obteve nı́vel 7 na escala TRL ao atuar
em ambientes operacionais.

3.4. Considerações sobre a Dispersão de Etiquetas Eletrônicas

A partir da necessidade de manter o processo de flotação estável, foi observado que a
realização da rastreabilidade da composição do minério desde o processo de desmonte poderia
ter papel determinante. Tal atividade já havia passado por duas metodologias diferentes, uma
que perdia as etiquetas no desmonte e outra que gerava condições inseguras aos funcionários.

Neste contexto, foi sugerida a realização do lançamento das etiquetas via RPA. O de-
senvolvimento foi realizado em duas etapas: i) criação do protótipo e testes em ambiente repre-
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Figura 3.10: Voo automatizado sobre material detonado. Caixa amarela apresentando foco no
drone em voo.
Fonte: O autor.

sentativo e ii) validação em área, na Mina do Salobo, bem como a definição de parâmetros para
operacionalização. As sequências de testes permitiram a realização da prova de conceito: foi
possı́vel validar a execução desta atividade por RPA com dispositivo desenvolvido e, também,
foi feita a definição de parâmetros de trabalho (altura de 25 m, distância dos waypoints de 20 m
e velocidade de 3 m/s).

Por fim, com os resultados obtidos foi possı́vel atingir o nı́vel 7 da escala TRL e além
disso foi possı́vel solicitar um pedido de patente de invenção para o protótipo e metodologia
desenvolvidos neste trabalho.

3.5. Trabalhos futuros

Como trabalhos futuros, são sugeridos:

• Embarcar outros sensores no protótipo desenvolvido como acelerômetros, giroscópios ou
IMU para automatizar o gatilho do dispersor de etiquetas eletrônicas por meio de um
movimento pré-programado sempre que a RPA estiver na posição de interesse.

• Utilização de modelos de RPA com GPS RTK, pois assim é possı́vel eliminar o offset de
coordenadas realizado no planejamento da rota e, caso o magnetômetro apresente algum
defeito ou ruı́do, a RPA pode manter seu referencial no GPS com precisão de posiciona-
mento na ordem de centı́metros.

• Integração do Kit de Desenvolvimento de Software (do inglês Software Development Kit,
SDK) da DJI. Assim, o gatilho do dispositivo dispersor de etiquetas deve ser realizado
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de forma diferente e a rota pode ser feita de forma manual. Com a integração do SDK
pode-se configurar um botão do controle da RPA para efetuar o gatilho do servo motor, de
forma que, sempre que o botão for pressionado, uma etiqueta deva ser lançada. Ainda na
configuração deste botão, deve-se salvar as coordenadas do GPS da RPA sempre que ele
for pressionado, garantindo a rastreabilidade do local. Aconselha-se a utilização de uma
RPA que possua GPS RTK para minimizar o erro de posição entre os sistemas de coorde-
nadas. Em termos operacionais, a execução desta atividade promove mais flexibilidade e
apresenta uma redução no tempo em comparação com a metodologia demonstrada ante-
riormente, pois as distâncias entre os pontos para o lançamento de etiquetas não precisam
ser fixas e nem sequer em função do tempo.
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4. INVESTIGAÇÃO EM FOTOGRAMETRIA PARA A
RECONSTRUÇÃO 3D DE AMBIENTES NA MINERAÇÃO

Este Capı́tulo apresenta a investigação desenvolvida no método da fotogrametria para
a execução de reconstrução 3D em ambientes hostis, tais como cavernas, galerias e espaços
confinados aplicados à mineração. São descritos, também, os resultados apresentados no re-
sumo: Investigation on Photogrammetry and LiDAR Models for Caves/Mines 3D Recons-

truction (RESENDE FILHO et al., 2019), no relatório técnico: Dispositivo robótico para

inspeção de ambientes restritos e confinados (FREITAS et al., 2020a) e no artigo de perı́odo:
Towards semi-autonomous robotic inspection and mapping in confined spaces with the Espeleo-

Robô (AZPÚRUA et al., 2021), frutos de trabalhos em colaboração com os coautores indicados
nos documentos citados.

Devido à necessidade de adequar às normas ambientais de Legislação de Proteção ao
Patrimônio Cultural Nacional e Ambiental por meio do Decreto1 n◦ 99.556 de 01/10/1990,
à Portaria2 do Instituto Brasileiro do Meio Ambiente (IBAMA) n◦ 887/90 de 15/06/1990, às
resoluções do Conselho Nacional do Meio Ambiente (CONAMA) e à necessidade de buscar
maior eficiência no processo de extração, as mineradoras estão procurando determinar se um
local pode ser explorado ou não utilizando as técnicas de espeleologia. Entende-se espeleologia
como a ciência que realiza estudos das cavidades naturais quanto à sua origem e evolução, ao
meio fı́sico que elas representam, ao seu ecossistema atual ou passado e aos meios e técnicas
que são próprias do seu estudo (MONTEIRO, 2011).

Contudo, a realização do estudo de espeleologia em cavernas e dutos nem sempre é
uma tarefa fácil, deixando o responsável pela atividade exposto a riscos ergonômicos, fı́sicos,
biológicos e até quı́micos (gases), conforme pode ser observado na Figura 4.1.

(a) Espeleólogo em ambiente de difı́cil acesso (b) Caverna com a presença de morcegos

Figura 4.1: Ambientes tı́picos para a realização da espeleologia.
Fonte: (a) Figueiroa (2004), (b) Costa (2012).

1http://www.planalto.gov.br/ccivil 03/decreto/1990-1994/D99556.htm
2https://www.ibama.gov.br/component/legislacao/?view=legislacao&legislacao=94232
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Nos últimos anos, graças aos avanços tecnológicos, uma alternativa que tem sido ado-
tada para realização de tarefas que podem ser nocivas às pessoas, é fazê-la com a aplicação de
robôs móveis. Robôs móveis são dispositivos teleoperados, semi ou completamente autônomos,
desenvolvidos para atividades especı́ficas em que a mobilidade é necessária (COTA, 2019). Se-
guindo essa tendência, a Vale, em 2014, adquiriu seu primeiro robô móvel para realizar espe-
leologia, o EspeleoRobô, que foi descrito na Subseção 2.1.4 e apresentado nas Figuras 1.5 e
2.5. Não restrito apenas a espeleologia, este robô é também utilizado em inspeções em espaços
confinados, conforme pode ser verificado na Figura 4.2.

(a) Inspeção de tubulação da barragem de água da
Mina do Fazendão

(b) Inspeção em moinho de bolas na Usina
Conceição 2

Figura 4.2: EspeleoRobô em trabalhos de campo.
Fonte: Acervo ITV.

Para que a espeleologia do local de interesse seja realizada, é necessário, primeira-
mente, que o ambiente seja modelado, de forma a obter a sua reconstrução 3D. O estudo e
a reconstrução 3D de superfı́cies e objetos, por sua vez, podem ser realizados utilizando dife-
rentes tipos de sensores, cada um com um método especı́fico.

Neste contexto, surge a necessidade de se investigar uma metodologia para se realizar
a reconstrução 3D de um ambiente hostil, como cavernas e minas subterrâneas, utilizando as
técnicas de fotogrametria a partir do EspeleoRobô ou até mesmo outras plataformas móveis.

4.1. Trabalhos relacionados

Thrun et al. (2004) apresentam o GroundHog, um robô utilizado para a exploração e
mapeamento de minas abandonadas de forma autônoma. O robô, que pesa 680 kg, é equipado
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com computador embarcado, LiDAR, sensores a gás e de afundamento e câmeras. Os autores
apresentam as técnicas e os desafios para realizar o mapeamento e localização simultaneamente.

Li et al. (2020) apresentam o desenvolvimento do CUMT-B, um robô utilizado para
aplicações de resgaste em minas de carvão na China. Este robô apresenta câmeras, sensores de
gases, microfones e alto falante, que o permitem analisar o ambiente e comunicar com pessoas,
caso necessário. Além disso, o CUMT-B pode-se deslocar até 7 km, a uma velocidade máxima
de 1,3 m/s e com inclinação máxima de 32◦.

Não restrito apenas a robôs terrestres, Freire e Cota (2017) apresentam alternativas para
acessar e obter informações dentro de minas subterrâneas utilizando RPAs. Nesta produção, os
autores demonstram as operações com um drone e com um balão a gás e afirmam ser possı́vel
manusear os equipamentos mesmo sem o uso de GPS, desde que eles estejam em visada direta
e haja iluminação.

Mascarich et al. (2018) demonstram uma aplicação utilizando uma RPA equipada com
uma Unidade Multi Modal de Mapeamento (do inglês Multi-Modal Mapping Unit), que consiste
de dois leds ultra claros, uma unidade inercial de medida, um par estéreo de câmeras e um sensor
de profundidade. Com este sistema, os autores mostram que é possı́vel fazer missões autônomas
e mapeamentos de ambientes fechados.

Nesse contexto, a Agência de Projetos de Pesquisa Avançada de Defesa (do inglês
Defense Advanced Research Projects Agency, DARPA) propôs o DARPA Subterranean ou
“SubT” Challenge, que busca novas abordagens para mapear, navegar e pesquisar ambientes
subterrâneos e de difı́cil acesso, uma vez que trabalhar nesses locais sempre foi considerado uma
atividade desafiadora, tanto para aplicações militares, como para civis. Variando-se a comple-
xidade do ambiente, diferentes tipos de perigos e dificuldades podem estar presentes (DARPA,
2020).

Dessa forma, o objetivo deste trabalho é investigar um método de fotogrametria para a
realização de reconstrução 3D em ambientes subterrâneos e com pouca iluminação, definindo
uma metodologia que apresente resultados satisfatórios, que permitam extrair informações e
dar suporte na tomada de decisões. Além disso, deseja-se comparar a fotogrametria com outros
métodos ativos, LiDAR-SLAM e Visual-SLAM, a fim de validar o quão precisos foram os
resultados obtidos por ela.

4.2. Metodologia

Esta Seção apresenta os procedimentos executados para a definição da metodologia uti-
lizada na fotogrametria para os ambientes definidos pelo escopo deste trabalho.
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4.2.1. Análise de software para realização da fotogrametria

A investigação na realização da reconstrução 3D a partir da fotogrametria iniciou-se
pela definição de um software. Neste aspecto, foram selecionados cinco softwares que fossem
open source, para iniciar os trabalhos. A Tabela 4.1 apresenta os softwares selecionados para a
análise, bem como algumas de suas caracterı́sticas.

Tabela 4.1: Lista de softwares selecionados para análise de fotogrametria e algumas de suas
caracterı́sticas.

Software Versão Nuvem de
pontos

Nuvem
densa Superfı́cie Textura

OpenSfM v0.2.0 Sim Sim Não Não
AliceVision - Meshroom 2019.2.0 Sim Sim Sim Sim

COLMAP 3.6-dev.2 Sim Sim Sim Não
Mesh Reconstruction Software 1.0 Não Não Sim Não

Meshlab 20190129-beta Não Não Sim Sim

Fonte: O autor.

Em seguida, para cada um deles, foram realizadas três reconstruções 3D de ambientes
internos e estruturados com 30, 40 e 50 fotos. Nessas reconstruções, comparou-se o tempo
necessário para o processamento e também a sua qualidade. A qualidade, nesse momento, foi
analisada de forma qualitativa: avaliou-se a representatividade do ambiente e a presença de
falhas na reconstrução.

As fotos utilizadas neste teste foram obtidas através de uma câmera GoPro 5 Hero (Go-
Pro, San Mateo) e as reconstruções foram realizadas em um computador equipado com proces-
sador Xeon (R) W-2123 (Intel, Santa Clara), com 64GB de RAM e com placa de vı́deo TITAN
Xp/PCIe/SSE2 (NVIDIA, Santa Clara).

Da lista citada na Tabela 4.1, para os softwares Mesh Reconstruction Software e Mesh-
lab, não foi possı́vel obter reconstruções 3D diretamente. Para os demais, as Figuras 4.3 e 4.4
apresentam os resultados obtidos com 30, 40 e 50 fotos. É importante ressaltar que as reconstruções
foram executadas utilizando os parâmetros padrão de cada software.

(a) Resultado do software OpenSfM (b) Resultado do software AliceVision -
Meshroom

Figura 4.3: Fotogrametrias realizadas com 30 fotos.
Fonte: O autor.
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(a) Resultado do software
OpenSfM

(b) Resultado do software
AliceVision - Meshroom

(c) Resultado do software
COLMAP

Figura 4.4: Fotogrametrias realizadas com 40 e 50 fotos. A primeira linha apresenta os
resultados com 40 fotos e a segunda com 50 fotos.

Fonte: O autor.

Note que na Figura 4.3 não é apresentado o resultado obtido pelo COLMAP, uma vez
que o software não convergiu para uma solução. A Tabela 4.2 apresenta os tempos aproximados
para as reconstruções 3D obtidas.

Tabela 4.2: Tempos aproximados nas reconstruções 3D.

Software Tempo aproximado de execução [min]

30 fotos 40 fotos 50 fotos

OpenSfM 4 5 17
AliceVision - Meshroom 14 21 18

COLMAP - 55 74

Fonte: O autor.

Analisando-se os resultados obtidos, observa-se que o software OpenSfM apresenta os
melhores resultados, uma vez que é o mais rápido. Já analisando as Figuras 4.3 e 4.4, pode-se
dizer que, qualitativamente, os resultados obtidos pelo software AliceVision - Meshroom são
melhores, uma vez que conseguem representar melhor o ambiente e apresentam menos bura-
cos/falhas que os demais. Como um dos objetivos deste trabalho é a avaliação de ambientes,
considerou-se mais importante a qualidade em detrimento do tempo. Portanto, o software Ali-
ceVision - Meshroom foi selecionado para dar continuidade nesta investigação.
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4.2.2. Fluxo de reconstrução 3D no software escolhido

Uma vez definido o software para a realização da fotogrametria, analisou-se como a
reconstrução é realizada nele. O AliceVision - Meshroom, é um framework desenvolvido para
realizar reconstruções 3D e rastreamento de câmeras, é composto por algoritmos de visão com-
putacional estado-da-arte que já foram exaustivamente testados/analisados e que podem ser
extrapolados. Este software é resultado de uma colaboração entre a academia e a indústria para
fornecer algoritmos com qualidade e robustez para as mais diversas aplicações (ALICEVISION,
2021). O AliceVision - Meshroom é um software de fácil utilização e apresenta uma interface
amigável.

Ao executar o software, o fluxo básico da fotogrametria é exibido no campo Graph Edi-

tor (consulte Apêndice B - Figura B1). Neste fluxo, as etapas do processo de reconstrução são
carregadas e dispostas como entradas/saı́das. Cada bloco é responsável pela execução de uma
atividade e apresenta configurações que, se ajustadas da maneira adequada, podem melhorar
os resultados da fotogrametria. Também é possı́vel adicionar, excluir e reordenar os blocos de
forma a alterar a reconstrução 3D. Abaixo é apresentada breve descrição de cada um dos blocos
padrão (ALICEVISION, 2021):

• CameraInit: responsável por extrair os metadados das imagens. O objetivo deste bloco é
obter as informações intrı́nsecas da câmera utilizada;

• FeatureExtraction: responsável por identificar grupos de pixels que são invariantes no
tempo, também conhecidos como features, à medida que a câmera é deslocada;

• ImageMatching: responsável por selecionar pares de imagens correspondentes, de forma
a encontrar as imagens que se enquadram nas mesmas cenas;

• FeatureMatching: responsável por executar a correspondência de todos features entre os
pares de imagens candidatas;

• StructureFromMotion: responsável por analisar as correspondências dos features para
entender a relação geométrica por trás de todas observações 2D e inferir a estrutura rı́gida
em 3D com a pose;

• PrepareDenseScene: responsável por exportar imagens não distorcidas, para que o mapa
de profundidade e texturização sejam calculados em imagens sem distorção;

• DepthMap: responsável por estimar o valor de profundidade para cada pixel que foi esti-
mado no StructureFromMotion;

• DepthMapFilter: responsável por filtrar os valores de profundidade do mapa de profun-
didade que não são coerentes;
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• Meshing: responsável por criar uma representação geométrica densa da superfı́cie da
cena;

• MeshingFiltering: responsável por aplicar um filtro laplaciano para remover os defeitos
locais do Meshing;

• Texturing: responsável por calcular a texturização na representação geométrica.

4.2.3. Proposta de fluxo de reconstrução 3D

Como o objetivo deste trabalho é realizar a fotogrametria em ambientes subterrâneos e
com pouca iluminação, foram propostas três modificações no fluxo padrão de reconstrução do
AliceVision - Meshroom para minimizar as limitações impostas pelos locais em questão.

A primeira alteração no fluxo de reconstrução 3D foi a inclusão de um bloco Structu-

reFromMotion, de forma que o fluxo apresentasse dois blocos StructureFromMotion em série.
Além disso, no primeiro bloco o parâmetro minInputTrackLength foi alterado para 4, enquanto
no segundo se manteve o padrão, que é 2. Essas alterações melhoram a robustez da seleção/re-
construção do par inicial de imagens e são úteis quando se trabalha com um maior volume de
imagens.

A segunda alteração foi no bloco FeatureMatching. Neste bloco, foi ativada a opção
Guided Matching. Esta opção habilita um segundo estágio no procedimento de correspondência
dos features, o que minimiza a rejeição precoce e, consequentemente, melhora o número das
correspondências, em particular para estruturas repetitivas.

E a última alteração realizada foi a inclusão do recurso Augment Reconstruction. Esta
operação permite a inclusão de diferentes imagens ao fluxo padrão, de maneira adicional, e
é adequada para análise de cenas mais complexas. O fluxo de operações, após adicionar o
recurso Augment Reconstruction, é ligeiramente alterado e o bloco ImageMatchingMultiSfM,
que permite a fusão dos grupos em uma única reconstrução é adicionado automaticamente.

No Apêndice B - Figura B2 é demonstrado o fluxo de reconstrução 3D, após a realização
das alterações acima citadas.

4.2.4. Comparação dos fluxos de reconstrução 3D

Para validar o fluxo de reconstrução 3D proposto na Subseção anterior e compará-lo
com o fluxo padrão do AliceVision - Meshroom, Subseção 4.2.2, foram realizadas fotograme-
trias seguindo os dois métodos. As reconstruções foram feitas em dois cenários distintos, sendo
um simulado e outro real. As comparações dos resultados obtidos foram analisadas qualitati-
vamente, observando-se a representatividade do ambiente e a presença de falhas e quantitativa-
mente através do tempo decorrido.

O primeiro cenário analisado foi a caverna subterrânea do DARPA Subterranean3. Este
3“cave 02” acessado em https://github.com/osrf/subt
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ambiente tem obstáculos, terreno irregular e geometria realista de cavernas subterrâneas (Fi-
gura 4.5). Todos os experimentos foram realizados utilizando a versão virtual do EspeleoRobô
dentro do simulador CoppeliaSim4, executado com o Sistema Operacional de Robôs (do inglês
Robot Operating System, ROS) na versão Kinetic e Ubuntu 16.04.

Figura 4.5: Cenário experimental no simulador CoppeliaSim.
Fonte: O autor.

Já o segundo cenário foi a mina de ouro subterrânea conhecida como Mina du Veloso,
localizada em Ouro Preto - MG, Brasil (coordenadas: 20◦22′34.9′′ sul, 43◦30′57.7′′ oeste). Na
Figura 4.6 pode-se observar o EspeleoRobô dentro deste local. A Mina du Veloso é caracte-
rizada por possuir um corredor estreito, de aproximadamente 200 metros, com vários nı́veis e
terreno acidentado.

Figura 4.6: Cenário experimental na Mina du Veloso.
Fonte: O autor.

Para o cenário da caverna subterrânea do DARPA Subterranean, o EspeleoRobô foi
montado com uma câmera RGB-D, um LiDAR e uma IMU. Já para o cenário da Mina du

4http://www.coppeliarobotics.com
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Veloso, ele foi montado com a câmera RealSense D435i (Intel, Santa Clara), o LiDAR OS 1
(Ouster, São Francisco), a IMU MTI-G-710 (Xsens, Enschede) e um módulo de led de 100W
(StratusLEDS, Seatle). Os dados coletados foram armazenados utilizando o ROS.

4.2.5. Comparação com outros métodos de reconstrução 3D

Como forma de analisar o quão preciso foram os resultados obtidos pela fotogrametria,
realizou-se uma comparação dela com outras duas metodologias de reconstrução 3D: o LiDAR-
SLAM através da técnica do LeGO-LOAM5 e o Visual-SLAM através da técnica RTAB-MAP6.
Estas técnicas, que são realizadas a partir de sensores ativos, são aplicadas em atividades de
Localização e Mapeamento Simultâneos (do inglês Simultaneous Localization and Mapping,
SLAM).

A comparação entre as três metodologias foi feita a partir de suas respectivas nuvens de
pontos. Após realizar as reconstruções 3D dos ambientes, foram comparados os erros ponto a
ponto, para cada um dos métodos, com o ground truth, que é considerado como a referência
para reconstrução e que pode ser traduzido para o português como “verdade fundamental”. As
comparações foram realizadas nos dois cenários já apresentados neste trabalho. Sendo assim,
para o cenário da caverna do DARPA Subterranean, como o ambiente é simulado, a própria
caverna foi selecionada como ground truth. Agora, para o cenário da Mina du Veloso, uma
referência foi determinado a partir dos resultados obtidos pela simulação: àquele método que
apresentou o menor erro, considerando toda a distribuição dos dados, foi o selecionado. Desta
forma, as outras duas metodologias foram comparadas com a referência definida.

Nestas análises, também foi considerado o tempo de processamento, a fim de se conhe-
cer melhor as aplicações e limitações de cada método.

4.3. Resultados e discussões

Esta Seção apresenta os resultados obtidos para cada um dos testes propostos anterior-
mente.

4.3.1. Reconstruções 3D por fotogrametrias

Utilizando os dados previamente gravados pelo ROS para cada um dos cenários, as
reconstruções sucederam-se de forma offline. As imagens utilizadas nas fotogrametrias foram
extraı́das das informações gravadas pelas câmeras RGB-D, as quais foram usadas imagens RGB
com resolução de 640×480 pixels. Para executar as reconstruções foi utilizado um computador
equipado com uma CPU i5-9300H (Intel, Santa Clara), 16GB de RAM e placa de vı́deo RTX
1050 (NVIDIA, Santa Clara).

5https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
6http://introlab.github.io/rtabmap/
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Para o cenário do DARPA Subterranean, foram extraı́das 365 imagens, considerando
um trecho da caverna. Aplicando-se o fluxo padrão de reconstrução 3D, que é direto, todas
as imagens foram adicionadas a ele e a fotogrametria foi realizada. Após o processamento,
obteve-se uma reconstrução 3D do ambiente com 399.946 vértices (Figura 4.7a). O tempo de
reconstrução foi de aproximadamente 1 hora e 17 minutos. Em seguida, fora aplicado o fluxo de
reconstrução proposto na Subseção 4.2.3. Apesar de utilizar as mesmas 365 imagens, a inclusão
delas foi realizada de forma diferente. Nesta metodologia, três grupos foram criados seguindo
a divisão: no primeiro utilizou-se 105 imagens, enquanto que no segundo e terceiro foram
utilizadas 130 em cada um. As 105 imagens utilizadas no primeiro grupo foram selecionadas
de forma a permitir identificar todo o trajeto percorrido pelo EspeleoRobô, enquanto que, nos
demais grupos, as imagens foram utilizadas para fornecer informações adicionais. Ao final,
obteve-se uma reconstrução 3D do ambiente com 106.332 vértices (Figura 4.7b). O tempo de
reconstrução foi de aproximadamente 1 hora e 45 minutos.

(a) Resultado da fotogrametria seguindo fluxo
padrão AliceVision - Meshroom

(b) Resultado da fotogrametria seguindo fluxo
proposto no trabalho

Figura 4.7: Fotogrametria aplicada a caverna do DARPA Subterranean.
Fonte: O autor.

Utilizando-se o fluxo padrão do AliceVision - Meshroom, notou-se que o software, ape-
sar de convergir a um resultado, não conseguiu criar uma malha que se correlacionasse ao
ambiente analisado. Tal fato pode ser explicado pela dificuldade que essa metodologia apre-
sentou para identificar um SfM que fosse coerente com a rota realizada pelo EspeleoRobô na
simulação. Em contrapartida, no outro método, as alterações realizadas fortaleceram a definição
do SfM: foram utilizados dois blocos StructureFromMotion em série com parâmetros diferentes
e, além disso, a opção Guided Matching fora habilitada, permitindo melhora na correspondência
de features. O resultado dessas operações foi uma definição robusta do SfM. E uma vez que o
SfM foi bem definido, obteve-se êxito ao adicionar novas informações à reconstrução através
do recurso Augment Reconstruction. Por isso, analisando-se a Figura 4.7, pode-se dizer, quali-
tativamente, que a reconstrução 3D utilizando o segundo método foi melhor que a primeira.

Com relação ao tempo de processamento pode-se observar que as alterações realizadas
no fluxo proposto aumentaram o tempo de processamento em 28 minutos, o que representa um
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acréscimo de aproximadamente 27% no tempo para a obtenção do resultado. Esse aumento
pode ser explicado pelo fato do fluxo proposto possuir três blocos de DepthMap, conforme
demonstrado na Figura B2, nos Apêndices B. Este bloco que é responsável por estimar o valor
de profundidade de cada pixel da reconstrução, geralmente, consome 70% do tempo de uma
fotogrametria. Neste caso, o aumento do tempo se limitou a 28 minutos porque as imagens no
fluxo proposto foram incluı́das em grupos menores do que no fluxo padrão.

Para o cenário da Mina du Veloso foram extraı́das 333 imagens de um trecho do corredor.
Assim como na caverna do DARPA Subterranean, para a metodologia padrão do AliceVision
- Meshroom, todas as imagens foram adicionadas diretamente ao fluxo e a fotogrametria foi
realizada. Após o processamento, obteve-se uma reconstrução 3D do ambiente com 63.624
vértices (Figura 4.8a). O tempo de reconstrução foi de aproximadamente 1 hora e 6 minutos.
Na mesma linha de raciocı́nio anterior, para o outro fluxo de reconstrução 3D, as imagens foram
divididas em três grupos. O primeiro grupo ficou com 133 imagens, enquanto que o segundo
e terceiro grupos ficaram com 100 imagens cada um. Ao final, obteve-se uma reconstrução 3D
do ambiente7 com 139.326 vértices (Figura 4.8b). O tempo de reconstrução foi de aproximada-
mente 1 hora e 28 minutos.

(a) Resultado da fotogrametria seguindo fluxo
padrão AliceVision - Meshroom

(b) Resultado da fotogrametria seguindo fluxo
proposto no trabalho

Figura 4.8: Fotogrametria aplicada a Mina du Veloso.
Fonte: O autor.

Conforme apresentado na Figura 4.8, nota-se que ambas reconstruções conseguiram
representar o ambiente de maneira realista e com alta qualidade. Contudo, pode-se observar
também que o trecho reconstruı́do pelo fluxo padrão foi menor e apresentou mais falhas em
comparação com o outro fluxo. Neste caso em especı́fico, ambas reconstruções definiram bem
o SfM, mas a segunda conseguiu detalhar melhor o ambiente, o que pode ser explicado pela
opção Guided Matching que foi ativada e ao uso do recurso Augment Reconstruction. Portanto,
considera-se que a segunda metodologia apresentou um resultado qualitativamente melhor.

Assim como na simulação, observa-se que o fluxo proposto demorou mais tempo para
obter a reconstrução do que o fluxo padrão, apresentando um aumento de 22 minutos, o que

7https://skfb.ly/6SLSV
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representa um acréscimo de 33% no tempo.
Neste cenário foi possı́vel observar duas particularidades para a realização da fotograme-

tria que ainda não haviam sido percebidas. Primeiramente, notou-se que para melhor definição
do SfM, quanto menos o EspeleoRobô rotacionasse em torno do seu eixo, mais fácil era a
extração da trajetória percorrida por ele. Como o robô se deslocou a uma baixa velocidade,
inferior a 1 m/s, e a câmera gravou a uma taxa de 15 quadros/segundo, notou-se que haviam
muitas imagens com cenas repetidas e borradas quando ele fazia os movimentos de rotação. A
inclusão dessas imagens no fluxo de reconstrução 3D, quando processadas pelo software, provo-
cava um erro na estimativa da pose em questão afetava as seguintes. Mesmo que essas imagens
fossem filtradas ou retiradas do banco de imagens, notou-se que havia impacto no restante do
processamento. Consequentemente, para se maximar a definição do SfM, é aconselhável que o
robô evite rotações no próprio eixo.

A segunda observação realizada durante os procedimentos foi em relação ao campo de
visão da câmera utilizada. Notou-se que nas regiões mais próximas da câmera, isto é, o chão e
alturas de até 1,0 m, a reconstrução 3D apresentou menos buracos em comparação com alturas
superiores e ao teto. Consultando as especificações técnicas da câmera, é possı́vel verificar que
seu campo de visão na vertical é de 42,5◦, o que representa uma abertura relativamente pequena.
Sendo assim, para se potencializar a reconstrução 3D e evitar a presença indesejável de buracos
causados pelo campo de visão, sugere-se a utilização de câmeras com maior abertura vertical.

4.3.2. Comparação de métodos de reconstrução 3D

Para a comparação, foram selecionados dados de uma mesma base de informações.
Na fotogrametria foram utilizadas imagens RGB gravadas pelas câmeras RGB-D. No LiDAR-
SLAM, as nuvens de pontos foram coletadas pelos LiDARs. Por fim, no Visual-SLAM, foram
utilizadas imagens RGB-D gravadas pelas câmeras RGB-D.

A fotogrametria, nesta comparação, foi realizada considerando o fluxo de reconstrução
proposto na Subseção 4.2.3, cujos resultados na Subseção 4.3.1 demonstraram melhor desempe-
nho comparado com o fluxo padrão. Portanto, para simplificar a nomenclatura, nesta Subseção
o fluxo proposto é apresentado simplesmente como fotogrametria. De maneira análoga, as
técnicas LeGO-LOAM e RTAB-MAP, são identificadas, respectivamente, por suas metodolo-
gias: LiDAR-SLAM e Visual-SLAM.

4.3.2.1. Caverna do DARPA Subterranean

Foram realizadas as reconstruções 3D para cada um dos métodos para uma seção da
caverna. A Figura 4.9 apresenta a comparação das nuvens de pontos geradas, na qual a pri-
meira linha representa as nuvens de pontos obtidas por cada metodologia, a segunda linha a
comparação entre as nuvens e o ground truth (região cinza da imagem), e a terceira linha o
histograma dos erros.
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(a) Fotogrametria (b) LiDAR-SLAM (c) Visual-SLAM

Figura 4.9: Análise de erro das nuvens de pontos aplicadas aos três métodos de reconstrução
3D para a caverna do DARPA Subterranean.

Fonte: Azpúrua et al. (2021).

A Tabela 4.3 apresenta quantos pontos foram representados por cada nuvem de pontos,
e os erros máximos em 2σ (distribuição de 95% dos pontos), 3σ (distribuição de 99,7% dos
pontos) e em toda amostra.

Tabela 4.3: Análise das nuvens de pontos para as reconstruções 3D realizadas na caverna do
DARPA Subterranean.

Método de
reconstrução

Número de pontos
da nuvem

Erro máximo
em 2σ [m]

Erro máximo
em 3σ [m]

Erro máximo
[m]

Fotogrametria 79.404 0,054 0,332 1,85
LiDAR-SLAM 31.239 0,115 0,258 0,33
Visual-SLAM 383.862 0,128 0,480 0,80

Fonte: Azpúrua et al. (2021).

Analisando a Tabela 4.3 pode-se observar que as nuvens de pontos para cada método
apresentam dimensões diferentes, sendo que a nuvem de pontos do LiDAR-SLAM foi a mais
esparsa e a do Visual-SLAM a mais densa. Ainda na Tabela 4.3 observa-se que o menor erro
máximo em 2σ foi obtido pela fotogrametria seguido do LiDAR-SLAM, enquanto em 3σ o
LiDAR-SLAM obteve o melhor resultado seguido da fotogrametria. Quando se analisa toda a
amostra de dados, nota-se que a fotogrametria teve o maior erro máximo e o LiDAR-SLAM
os menores resultados. Apesar da fotogrametria apresentar o maior erro máximo, este método
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é o que converge mais rapidamente quando comparado aos demais, conforme demonstrado no
histograma de erros, na terceira linha da Figura 4.9.

Com relação ao tempo de processamento, a reconstrução realizada pela fotogrametria
foi feita utilizando 405, imagens de tamanho 640×480 pixels, e levou 1 hora e 10 minutos em
um computador equipado com CPU i7-10875H (Intel, Santa Clara), 32GB de RAM e placa de
vı́deo RTX 2070 (NVIDIA, Santa Clara). O método LiDAR-SLAM, que é um método online,
levou 1239± 226 ms para efetuar a varredura do ambiente e atualizar a reconstrução. Já o
método Visual-SLAM, que também é online, levou 56±12 ms por quadro e 486±123 ms por
quadro-chave para atualizar a reconstrução.

4.3.2.2. Mina du Veloso

Para a reconstrução da Mina du Veloso, o método LiDAR-SLAM foi selecionado como
referência pelo fato de ter obtido o menor erro máximo em toda amostra na análise das nuvens
de pontos apresentadas na Tabela 4.3. Portanto, as nuvens de pontos da fotogrametria e do
Visual-SLAM foram comparadas à ela. A Figura 4.10 apresenta a análise do erro das nuvens
de pontos para este cenário, na qual a primeira linha representa a nuvem de pontos obtidas para
cada método, a segunda linha a sobreposição da nuvem de pontos com a referência e a terceira
o histograma de erros.

(a) Fotogrametria (b) Visual-SLAM

Figura 4.10: Análise de erro das nuvens de pontos obtidas pela fotogrametria e Visual-SLAM
da Mina du Veloso, utilizando LiDAR-SLAM como referência.

Fonte: Azpúrua et al. (2021).
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A Tabela 4.4 apresenta quantos pontos foram representados por cada nuvem de pontos,
e os erros máximos em 2σ (distribuição de 95% dos pontos), 3σ (distribuição de 99,7% dos
pontos) e em toda amostra.

Tabela 4.4: Análise das nuvens de pontos para as reconstruções 3D realizadas na Mina du
Veloso.

Método de
reconstrução

Número de pontos
da nuvem

Erro máximo
em 2σ [m]

Erro máximo
em 3σ [m]

Erro máximo
[m]

Fotogrametria 154.881 0,290 0,500 2,06
Visual-SLAM 1.235.708 1,276 1,896 2,56

Fonte: Azpúrua et al. (2021).

A Tabela 4.4 demonstra novamente que as dimensões das nuvens de pontos foram dife-
rentes, sendo que a nuvem de pontos produzida pelo Visual-SLAM foi a mais densa, de novo.
Observa-se também pela Tabela 4.4 que a fotogrametria apresentou menores erros em relação
ao Visual-SLAM em todas as distribuições, bem como, convergiu mais rapidamente conforme
demonstrado na terceira linha da Figura 4.10. É importante ressaltar que a nuvem de pontos
gerada pela fotogrametria passou por operações manuais de rotação e escala para coincidir com
a nuvem de pontos da referência e, em seguida, os erros foram estimados. Essas operações
foram realizadas porque a fotogrametria é mais sujeita a erros rotacionais e de escala, uma vez
que utiliza apenas de recursos visuais para efetuar a reconstrução.

Com relação ao tempo de processamento, a reconstrução realizada pela fotogrametria foi
feita utilizando 103 imagens de tamanho 640× 480 pixels, e levou 22 minutos e 18 segundos,
enquanto o método Visual-SLAM, levou 59± 49 ms por quadro e 763± 200 ms por quadro-
chave para atualizar a reconstrução.

4.4. Considerações sobre a Investigação em Fotogrametria

Partindo da necessidade de adequação às vigentes normas e resoluções ambientais para
a exploração de cavernas e minas subterrâneas, a Vale desenvolveu o EspeleoRobô, um dis-
positivo robótico reduzido e com arquitetura modular capaz de realizar missões teleoperadas.
Este robô foi concebido para dar suporte as atividades de espeleologia, cujo objetivo é extrair
informações do local de interesse, tais como a modelagem 3D. Baseado nessa necessidade, este
trabalho apresentou uma investigação sobre reconstruções 3D para estes ambientes através das
técnicas da fotogrametria.

O trabalho iniciou-se com a investigação de um software open source que fosse ca-
paz não só de fazer a fotogrametria, mas que também, apresentasse recursos suficientes para a
realização de reconstruções 3D em ambientes subterrâneos. O software AliceVision - Mesh-
room apresentou os melhores resultados na análise e, por isso, deu sequência a este trabalho.
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Em seguida, foi proposto um fluxo de reconstrução, cujo objetivo era ser capaz de superar algu-
mas das limitações dos ambientes analisados. Esse fluxo, por sua vez, foi comparado ao fluxo
padrão do software como forma de validação. Na sequência, foram realizadas as fotogrametrias
de dois ambientes representativos, sendo um deles simulado e o outro real. Com o resultado das
reconstruções, observou-se que a alteração proposta apresentou benefı́cios na qualidade da fo-
togrametria e promoveu aumento no tempo de processamento de aproximadamente 30%. Ainda
nessas reconstruções, notou-se duas particularidades que afetaram diretamente nos resultados:
a relação da estimativa do SfM com a rotação sobre o eixo do robô, e a relação do campo de
visão da câmera com a presença de buracos. Por fim, a fotogrametria foi comparada a outros
dois métodos, LiDAR-SLAM e Visual-SLAM, como forma de analisar o erro ponto a ponto
e o tempo necessário para realizar a reconstrução. Nesta comparação foi possı́vel notar que a
fotogrametria apresenta boa precisão quando comparada a métodos ativos.

Com base nas informações acima expostas, pode-se concluir que este trabalho conseguiu
investigar as técnicas de fotogrametria, bem como suas limitações aplicadas nos ambientes
definidos pelo escopo do trabalho. Apoiado nestes resultados, acredita-se que estas técnicas
podem ser reproduzidas e extrapoladas para quaisquer outros tipos de ambientes aplicados à
mineração e com menos limitações, tais como frente de mina, pátio de estoque de produtos,
entre outros.

4.5. Trabalhos futuros

Como trabalhos futuros, são sugeridos:

• Realização de testes em ambientes reais com os atuais parâmetros;

• Avaliação da utilização de outras câmeras com campo de visão, na vertical, superior ao
utilizado neste trabalho (42,5◦);

• Utilização de referências externas na fotogrametria para reduzir os problemas de escala e
rotação;

• Combinar a fotogrametria com informações de odometria do robô, a fim de minimizar os
problemas de escala na reconstrução. Essa informação pode ser útil também na navegação
e pode até ser utilizada como técnica de pré-mapeamento para as metodologias SLAM.
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5. DETECÇÃO DE POTENCIAIS FALHAS PRECOCES
EM DUTO DE REJEITOS COM DISPOSITIVO
ROBÓTICO E APRENDIZADO DE MÁQUINA

Este Capı́tulo apresenta uma proposta, construção e avaliação de um sistema de visão
computacional de deep learning para a identificação de potenciais falhas precoces na tubulação
de rejeitos da Usina do Salobo. São descritos, também, os resultados apresentados no relatório
técnico: Inspeção da tubulação de rejeitos das usinas de Salobo (MAGNO et al., 2019) e no
artigo de conferência: Deep Learning for Early Damage Detection of Tailing Pipes Joints with

a Robotic Device (RESENDE FILHO et al., 2020), frutos de trabalhos em colaboração com os
coautores indicados nos documentos citados.

Na indústria da mineração é comum a utilização de grandes distâncias de tubos, sendo
eles de tamanhos e materiais variados. Somente nas instalações da Mina do Salobo, mina de
cobre localizada no interior da Floresta Amazônica, existem mais de três quilômetros e meio
de tubos de rejeitos. O rejeito gerado após o processamento do minério de cobre nessa mina é
enviado para uma barragem através de um tubo, que possui um diâmetro de 1200 mm, feito de
Polietileno de Alta Densidade (do inglês High-Density Polyethylene, HDPE).

O rejeito devido à sua alta velocidade e ao atrito, provoca efeito de abrasão no re-
vestimento interno ao passar pelo tubo, proporcionando o desenvolvimento de anomalias na
tubulação em forma de rasgos, buracos e superfı́cies irregulares. Por esse motivo, a cada seis
meses, é necessário inspecionar as condições da tubulação. Uma rotina de inspeção regular
é baseada na abertura de “janelas” (cortes com um tamanho aproximado de 80 x 60 cm) no
tubo e, em seguida, na execução de uma inspeção visual no local, feita por um mantenedor.
Esse processo é caro, lento e trabalhoso, pois a inspeção é restrita a uma região curta perto da
janela. Uma falha na detecção de danos ou anomalias na inspeção pode permitir vazamentos,
sendo capaz de interromper todo o complexo produtivo por várias horas ou dias, gerando perdas
econômicas significativas e aumentando os riscos operacionais para os trabalhadores.

Embora a equipe de manutenção realize uma inspeção visual cuidadosa em toda a infra-
estrutura e equipamentos da planta para evitar possı́veis irregularidades, a extensão dos tubos e
os perigos como gás tóxico, calor, entre outros, exigem um mecanismo de inspeção autônomo.
Nesse sentido, o uso de um dispositivo robótico remoto que possa entrar nos dutos para inspeção
de maneira simples e confiável é uma solução desejável.

Para a execução desta atividade foi proposta a utilização do EspeleoRobô, dispositivo
descrito na Subseção 2.1.4 e apresentado nas Figuras 1.5, 2.5, 4.2 e 4.6. O robô possui uma
grande variedade de sensores para executar missões autônomas e teleoperadas, como LiDAR,
câmeras de imagens digitais (RGB) e de profundidade (RGB-D) e sensores de gás, tornando-o
adequado para a atividade.

Para a atividade de inspeção, três câmeras RGB de alta definição localizadas em dife-
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rentes posições no robô foram utilizadas para gravar vı́deos que, posteriormente, poderiam ser
utilizados pelos operadores de manutenção para detectar remotamente os potenciais danos den-
tro dos tubos. A inspeção se concentrou principalmente nas juntas dos tubos que, em geral,
são as áreas mais impactadas. A captura de vı́deo é útil e aumenta a segurança nas operações
de inspeção, entretanto, a detecção automática de potenciais falhas precoces, proposta neste
trabalho, permite a verificação e tomada de decisão mais ágil pelas equipes de manutenção.

5.1. Trabalhos relacionados

Kakogawa et al. (2018) apresentam AIRo3, um robô desenvolvido para a inspeção de
tubos com diâmetro inferior a 100 mm. O AIRo3 apresenta um design compacto, podendo
avançar/retroceder e se mover helicoidalmente dentro das tubulações. O robô pode, também,
apresentar diferentes configurações em suas juntas, alterando o seu formato para melhor se
adaptar ao ambiente inspecionado.

Wahed e Arshad (2017) desenvolvem um robô do tipo prensa de parede para inspeção
de tubos. Este robô é composto por três seções: câmera, módulo de direção frontal e módulo de
direção traseira, apresentando comprimento total de 542 mm e diâmetro de 230 mm. Segundo
os autores, esta configuração, é mais barata e necessita de menos manutenção comparado com
os robôs de múltiplas rodas.

Para tentar contornar problemas de deslocamento de robôs nas ramificações em oleodu-
tos, Masuta et al. (2013) apresentam o Pipe Inspection Robot, um robô de inspeção de tubos que
pode operar em uma ampla gama de diâmetros e contornar as curvas. No trabalho, os autores
propõem o reconhecimento do tubo de derivação usando um sensor de visão de grade de fibra,
capaz de reconhecer a posição e a direção da flexão para executar o movimento de rotação.

Para identificar defeitos que podem causar danos ao sistema de tubos, Ganegedara et al.

(2012) afirmam que a abordagem popular tem sido enviar robôs com controle remoto para foto-
grafar e processar as imagens. Dessa forma, os autores apresentam uma abordagem baseada em
mapas auto-organizados que tem como objetivo isolar regiões de interesse que possam conter
defeitos. Com um algoritmo que consiste em três fases, eles restringem a área de busca para
detecção de defeitos e demonstram a eficácia da abordagem proposta para um conjunto de dados
de imagem de tubo real.

Chen et al. (2018) apresentam uma abordagem de aprendizado de ponta a ponta, baseada
em aplicações com CNN e TL para realizar uma detecção, baseada em visão, de tubulação de
esgoto. A estrutura de detecção foi dividida em detecção de movimento da câmera, detecção
anormal de quadros de vı́deo e classificação de defeitos de quadros anormais. Para melhorar a
precisão da detecção, foi adotada a estratégia de TL utilizando o conjunto de modelos múltiplos,
os quais atingiram precisão de 81%. No entanto, o método proposto pode ser aplicado apenas
para detectar defeitos com caracterı́sticas óbvias e apresenta baixo desempenho na detecção de
defeitos com caracterı́sticas não significativas.
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Para obter alta precisão e classificação robusta para a detecção de vazamento em tubos de
transmissão de petróleo bruto, Li et al. (2019) fundiram imagens RGB com imagens térmicas
usando uma CNN. A aplicação da fusão na CNN superou em 10% a precisão alcançada por
algumas redes estado da arte (LeNet5, AlexNet, VGGNet16 e ResNet50).

Neste trabalho combina-se robótica e deep learning para uso em uma aplicação que
exige uma inspeção eficaz para manter a produção de uma planta de mineração e também a
segurança do meio ambiente. É proposto um serviço capaz de realizar a inspeção de maneira
simples, rápida e confiável.

5.2. Métodos e procedimentos

Esta Seção apresenta os procedimentos realizados durante a coleta de dados e as etapas
de construção do detector de juntas de rejeito.

5.2.1. Coleta de dados

O conjunto de dados utilizado neste trabalho foi obtido por meio de uma inspeção reali-
zada em setembro de 2019 no duto de rejeitos da Usina do Salobo (coordenadas: 5◦47′05.6′′ sul,
50◦31′29.1′′ oeste). A tubulação tem extensão aproximada de 3,5 km, consistindo de trechos de
12 m conectados. A Figura 5.1 mostra uma vista superior da planta e da tubulação.

Figura 5.1: Vista superior da Mina do Salobo. A linha em amarelo destaca a tubulação.
Fonte: Adaptado de Google Earth (2020).

Dentre as câmera embarcadas no EspeleoRobô, a filmagem escolhida para ser usada
neste trabalho foi a realizada pela câmera digital B06W-1080P-HX (SV3C, Longgang District),
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que possui campo de visão de 70◦ e, consequentemente, facilita a detecção das potenciais fa-
lhas. A inspeção foi realizada apenas nas regiões mais crı́ticas do complexo de tubulações e
o robô entrou nos tubos a partir das janelas usadas para inspeção visual, conforme exposto na
Figura 5.2.

(a) Janela aberta na tubulação (b) EspeleoRobô sendo inserido pela janela

Figura 5.2: Inspeção dos tubos de rejeito.
Fonte: Resende Filho et al. (2020).

Nos vı́deos analisados, pode-se verificar que uma das situações mais recorrentes na
tubulação é o dano precoce nas juntas entre os trechos. Esses defeitos são caracterizados por
descontinuidade/orifı́cios na parte inferior da junta. A Figura 5.3 mostra um exemplo de uma
junta em boas condições e outra com um defeito inicial.

(a) Junta em bom estado (b) Junta com potencial defeito precoce,
devido à descontinuidade na parte inferior

Figura 5.3: Exemplos de juntas.
Fonte: Adaptado de Resende Filho et al. (2020).
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Com base nestas caracterı́sticas, este trabalho pode ser visto como tendo duas classes a
serem categorizadas: boas e ruins, onde o bom é representado pelas juntas em bom estado e o
ruim por aquelas com potenciais defeitos precoces.

A obtenção das imagens para o conjunto de dados foi realizada com um algoritmo em
Python a partir da biblioteca OpenCV (BRADSKI, 2000). Sendo assim, a partir dos vı́deos
foram extraı́das 187 imagens de cada classe. Os conjuntos de treinamento e teste utilizam 70 e
30% do conjunto de dados, respectivamente, o que representa 130 imagens para o conjunto de
treinamento e 57 para o conjunto de teste. As imagens utilizadas nos testes foram retiradas de
trechos de tubulação diferentes daqueles do treinamento, garantindo assim que a capacidade de
generalização da rede fosse testada.

5.2.2. Desenvolvimento da rede neural convolucional

Uma Rede Neural Convolucional é uma rede multicamada projetada especificamente
para reconhecer formas bidimensionais com um alto grau de translação, escala, inclinação e
outras formas de distorção, sendo capaz de extrair automaticamente suas próprias caracterı́sticas
de um conjunto de dados (HAYKIN, 2009). Para construir e treinar as redes, utilizou-se o
PyTorch (PASZKE et al., 2019), uma biblioteca de ML de código aberto. Todo o código foi
desenvolvido na linguagem Python.

Como o conjunto de dados usado foi limitado, treinar uma rede desde o inı́cio de sua
concepção não era uma opção viável. Para superar esta dificuldade, utilizou-se técnicas de TL
nos modelos, ou seja, inicialmente considerou os pesos dos modelos já treinados e consolidados
em grandes conjuntos de dados e depois eles foram ajustados para este caso, em especı́fico. Por-
tanto, os testes foram feitos com AlexNet (KRIZHEVSKY, 2020), DenseNet (HUANG et al.,
2017), GoogLeNet (SZEGEDY et al., 2015), Inception V3 (SZEGEDY et al., 2016), Mnas-
Net (SZEGEDY et al., 2016), MobileNet V2 (SANDLER et al., 2018), ResNet (HE et al.,
2016), ResNeXt (XIE et al., 2017), ShufflleNet V2 (MA et al., 2018), SqueezeNet (IANDOLA
et al., 2020), VGG (SIMONYAN e ZISSERMAN, 2020) e Wide ResNet (ZAGORUYKO e KO-
MODAKIS, 2020).

Antes de treinar as redes, foi realizado um DA, produzindo as seguintes operações:

• ajuste de saturação e matiz de com um fator 0,5;

• rotação horizontal aleatória, com 60% de probabilidade de ocorrência;

• rotação vertical aleatória, com 60% de probabilidade de ocorrência;

• distorção na escala de 0,3, com uma probabilidade de 30% de ocorrer;

• rotação aleatória no eixo de -45◦ até +45◦.

Para cada rede, o treinamento foi feito com 20 épocas e os testes de validação foram
repetidos 3 vezes, a fim de se obter a média dos melhores resultados.
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5.2.3. Mapas de ativação de classe

Para validação da rede, os CAM foram realizados para analisar a região com maior
relevância em sua classificação. O CAM é mecanismo usado para destacar qual região chamou
mais atenção na imagem para definir a classe, mas ele não representa diferentes classes. A
sua representação é feita através de um mapa de calor sobre as imagens testadas. Após o CAM,
uma caixa delimitadora foi criada em cima dele, com objetivo de enquadrar o local mais quente,
reforçando o seu resultado.

5.2.4. Tempo de execução

Para os modelos que apresentaram as melhores precisões, foi realizado um teste de
tempo de execução em diferentes tipos de hardware. Com esses resultados, é possı́vel veri-
ficar qual rede é mais eficiente e a necessidade de se utilizar GPU no computador embarcado
no robô.

5.2.5. Rede neural convolucional de disparo único

Como forma de automatizar a detecção de potenciais falhas precoces e usar o proces-
samento apenas quando necessário, uma rede no YOLOv3 foi treinada para detectar as juntas
na tubulação. O treinamento da rede foi feito com base no modelo Darknet-53, aplicando as
imagens de treinamento do conjunto de dados como entradas. Em seguida, testes de validação
foram realizados para avaliar as saı́das obtidas pela rede através do mAP e das predições reali-
zadas.

5.2.6. Fluxo esquemático do software proposto

Considerando as etapas apresentadas nas Subseções anteriores, pode-se representar este
sistema de detecção e classificação conforme a Figura 5.4. A CNN utilizada para o disparo
único é responsável pela detecção das juntas, são classificadas pelas demais CNNs em seguida.
Os outros testes descritos foram utilizados para validar visualmente e temporalmente a viabili-
dade do sistema.

Figura 5.4: Esquemático do fluxo de software proposto para detecção e classificação das juntas.
Fonte: O autor.
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5.3. Resultados e discussões

Esta Seção apresenta os resultados obtidos para cada um dos testes propostos anterior-
mente.

5.3.1. Treinamento da rede neural convolucional

Para os modelos mencionados na Subseção 5.2.2, testes de treinamento e validação fo-
ram realizados. A Tabela 5.1 mostra a média dos melhores resultados obtidos para cada rede.

Tabela 5.1: Resultados de acurácia para cada rede neural convolucional testada.

Modelo Média da melhor
acurácia no teste [%]

AlexNet 100,0 ± 0,0
DenseNet 100,0 ± 0,0

GoogLeNet 100,0 ± 0,0
Inception V3 100,0 ± 0,0

MnasNet 89,2 ± 7,1
MobileNet V2 100,0 ± 0,0

ResNet 100,0 ± 0,0
ResNeXt 100,0 ± 0,0

ShuffleNet V2 90,9 ± 9,8
SqueezeNet 83,9 ± 27,9

VGG 100,0 ± 0,0
Wide ResNet 100,0 ± 0,0

Fonte: Resende Filho et al. (2020).

De acordo com a Tabela 5.1, é possı́vel verificar que a maioria dos modelos apresentou
100% de acurácia. Isso pode ser explicado pelo fato da junta ter caracterı́sticas semelhantes a
uma borda, o que é facilmente detectável pelas CNNs. Tomando como exemplo a rede ResNet,
na Figura 5.5 é possı́vel observar o comportamento da acurácia nas etapas de treinamento e
validação ao longo das épocas.

Os modelos de redes MnasNet, ShuffleNet V2 e SqueezeNet não apresentaram média de
100% na acurácia (Tabela 5.1), portanto, eles não serão considerados para as próximas análises
realizadas para este trabalho.

71



Figura 5.5: Curvas de acurácia das etapas de treinamento e validação para a rede ResNet.
Fonte: O autor.

5.3.2. Mapas de ativação de classe

Como a maioria dos modelos apresentou acurácia de 100%, o CAM foi utilizado como
forma de validação visual dos resultados. Esta técnica foi aplicada ao modelo ResNet para todo
o conjunto de dados de teste. A arquitetura desta rede facilita a extração de sua última camada
de convolução e, como os resultados de sua acurácia foram 100%, permite inferir que as regiões
mais quentes tendem a ser aproximadamente as mesmas para todas as redes. Na Figura 5.6 é
possı́vel observar o CAM aplicado à duas juntas: uma boa e uma ruim. Nota-se que, indiferente
da classe, o nı́vel de calor é semelhante.

(a) Mapa de calor gerado para
uma junta boa

(b) Mapa de calor gerado para
uma junta ruim

Figura 5.6: Resultados do mapa de ativação de classe.
Fonte: Resende Filho et al. (2020).
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Nas imagens obtidas pelo CAM, uma caixa delimitadora foi criada para destacar a região
mais quente/ativa da imagem (Figura 5.7). Esta caixa foi estimada por meio de um fator de 0,8
sobre o CAM. Este valor foi definido empiricamente por meio de experimentos, como sendo um
bom compromisso entre a boa precisão da localização e o tamanho real da anomalia projetada
nas imagens.

(a) Caixa delimitadora no mapa de
calor em uma junta boa

(b) Caixa delimitadora no mapa de
calor em uma junta ruim

Figura 5.7: Caixa delimitadora aplicado ao mapa de ativação de classe.
Fonte: Resende Filho et al. (2020).

Uma vez que a caixa delimitadora foca onde estão as anomalias, fica claro que a área
com maior influência na classificação é a parte inferior da junta do tubo, as quais representam a
maioria dos defeitos anteriormente caracterizados, manualmente, pelo operadores.

5.3.3. Tempo de execução

O teste de tempo de execução foi aplicado apenas às redes que mostraram 100% de
precisão (consultar Tabela 5.1). Três diferentes hardware foram usados: Google Colab - Tesla
T4, NVIDIA - GeForce 930M e Intel Core i5-8250. Nos testes, foi calculado o tempo necessário
para que cada modelo realizasse uma classificação de todo o grupo de teste (114 imagens). A
Tabela 5.2 apresenta os resultados.

Considerando que a velocidade de deslocamento do robô na tubulação é de 0,3 m/s e
sabendo que a distância entre as juntas é de 12 m, pode-se dizer que o intervalo de tempo
entre as juntas é de aproximadamente 40 s. Para este perı́odo de tempo, desconsiderando o
processamento de outras atividades realizadas pelo robô, conforme Tabela 5.2, apenas o uso de
uma CPU é suficiente para qualquer modelo testado. No entanto, sugere-se utilizar aqueles que
possuem maior velocidade de processamento: AlexNet, MobileNet V2 e ResNet.
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Tabela 5.2: Resultados do tempo de execução para as redes neurais convolucionais em
diferentes tipos de hardware.

Modelo Google Colab - TESLA T4 NVIDIA - GeForce 930M Intel Core i5-8250
Tempo [ms] Frequência [Hz] Tempo [ms] Frequência [Hz] Tempo [ms] Frequência [Hz]

AlexNet 65 ± 4 15,38 52 ± 2 19,23 83 ± 7 12,05
DenseNet 96 ± 5 10,42 124 ± 10 8,06 236 ± 9 4,24

GoogLeNet 63 ± 5 15,87 60 ± 2 16,67 118 ± 3 8,47
Inception V3 70 ± 6 14,29 66 ± 3 15,15 128 ± 4 7,81

MobileNet V2 70 ± 4 14,29 57 ± 2 17,54 86 ± 6 11,63
ResNet 65 ± 4 15,38 54 ± 2 18,52 89 ± 6 11,24

ResNeXt 68 ± 4 14,71 76 ± 1 13,16 156 ± 5 6,41
VGG 56 ± 6 17,86 167 ± 10 5,99 267 ± 12 3,75

Wide ResNet 70 ± 4 14,29 138 ± 7 7,25 138 ± 16 4,00

Fonte: Adaptado de Resende Filho et al. (2020).

5.3.4. Rede neural convolucional de disparo único

O treinamento da YOLO foi feito com o objetivo de encontrar as juntas dentro do tubo.
A Figura 5.8 mostra o gráfico da evolução das respostas após 4000 épocas. Em azul são apre-
sentados os valores de perda e em vermelho os valores da precisão média ponderada.

Figura 5.8: Valores resultantes do treinamento do detector YOLOv3 no conjunto de dados.
Fonte: Resende Filho et al. (2020).

Como pode ser visto na Figura 5.8, entre 250 e 500 épocas, o resultado da perda já
é inferior a 1,0. Ao final, obteve-se um mAP de 94,4%, demonstrando que a rede é capaz de
encontrar a junta. Em seguida, o conjunto de dados de teste foi aplicado à rede treinada para
analisar o resultado (Figura 5.9). A YOLO, neste caso, foi utilizada apenas para detectar a junta
(destaque em roxo), não sendo responsável por sua classificação.
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(a) Exemplo de detecção aplicado a
uma junta boa

(b) Exemplo de detecção aplicado a
uma junta ruim

Figura 5.9: Detecções de juntas realizada pela rede YOLOv3.
Fonte: Resende Filho et al. (2020).

5.4. Considerações sobre a Inspeção Automatizada de Dutos

A partir da necessidade de acompanhar as condições da tubulação de rejeitos, a atividade
de inspeção da tubulação é realizada periodicamente na Usina do Salobo, minimizando o risco
de vazamentos ou quaisquer outros problemas. O processo é realizado atualmente de forma ma-
nual e, por conta da extensão da tubulação (aproximadamente três quilômetros e meio), é caro,
lento e trabalhoso. Neste contexto, viu-se a possibilidade de usar um dispositivo robótico que
fosse capaz de entrar na tubulação e realizar a inspeção de trechos mais longos de maneira rápida
e confiável. Para a execução desta atividade, foi proposta a utilização do EspeleoRobô com uma
abordagem deep learning para dar suporte à decisão sobre as atividades de manutenção.

Durante os procedimentos, observou-se que os modelos AlexNet, DenseNet, GoogLe-
Net, Inception V3, MobileNet V2, ResNet, ResNeXt, VGG e Wide ResNet foram mais eficien-
tes, atingindo 100% de acurácia, enquanto os modelos MnasNet, ShuffleNet V2 e SqueezeNet
apresentaram resultados mais baixos para a aplicação. Como forma de validar visualmente as
redes, o CAM foi implementado e demonstrou que a região mais ativa da imagem coincide com
a região em que os defeitos estão concentrados. Nos testes de tempo de execução, pode-se cons-
tatar que as redes AlexNet, MobileNet V2 e ResNet tiveram performance melhor que as demais,
uma vez que tiveram os menores tempos de processamento. Por fim, através do YOLOv3 foi
possı́vel detectar a junta com alto grau de precisão: mAP de 94,4%.

Uma vez que todos os resultados apresentaram desempenho satisfatório, essas estrutu-
ras podem ser conectadas em um único serviço, a fim de auxiliar na inspeção das tubulações.
Assim, pode-se concluir que a hipótese inicial de trabalhar com ML na detecção de potenciais
defeitos nas juntas dos rejeitos é viável, podendo ser aplicada nos desenvolvimentos posteriores
do software do EspeleoRobô.
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5.5. Trabalhos futuros

Como trabalhos futuros, são sugeridos:

• Realização de testes para validação do sistema proposto e também para coletar mais da-
dos, de forma a melhorar sua a robustez;

• Uma vez que as juntas apresentam distribuição uniforme no tubo, propõe-se combinar
a detecção das juntas com as informações de odometria do EspeleoRobô, utilizando a
detecção como mais uma variável para minimizar os erros associados à posição;

• Utilização do YOLOv3 como detector de juntas ruins, focando apenas no defeito. Esta
operação reduz o número de atividades do sistema atual e permite mais uma comparação,
o que favorece na definição do melhor sistema a ser utilizado.
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6. CONSIDERAÇÕES FINAIS

Este Capı́tulo apresenta as considerações finais e as contribuições desta dissertação, com
viés de revisão e fechamento, uma vez que as informações já foram apresentadas para cada
estudo de caso.

Graças à sua popularização e crescente demanda, a robótica está cada vez mais pre-
sente em nossas vidas. A partir do momento que os robôs ganharam mobilidade e passaram a
interagir com as pessoas, novas perspectivas de desenvolvimentos surgiram, permitindo a sua
utilização em tarefas repetitivas, perigosas ou naquelas que as pessoas não querem fazer. Desde
a última década, que foi marcada pela digitalização e a transformação digital, a robótica móvel
se aproximou da indústria. Dentre os setores da industria em que isso ocorreu, pode-se desta-
car a mineração, por apresenta forte impacto na economia e por ser um ambiente desafiador.
Apesar das aplicações robóticas se tornarem mais frequentes na mineração, investimentos e
pesquisas ainda devem ser feitas para o aperfeiçoamento de mecanismos robóticos e sistemas
de localização, navegação, e controle, buscando atingir o pleno desenvolvimento. É importante
destacar que a mineração apresenta particularidades relacionadas ao seu ambiente, tais como
presença de poeira, alta umidade e locais com baixa luminosidade que dificultam e impossibili-
tam algumas aplicações.

Nesta perspectiva, encontra-se esse trabalho com a proposta de realizar o desenvolvi-
mento de serviços robóticos para atuação na mineração, sendo feita a apresentação de três
estudos de caso aplicados: (i) Dispersão de Etiquetas Eletrônicas, (ii) Investigação em Fo-
togrametria, e (iii) Inspeção Automatizada de Dutos.

O primeiro estudo de caso, Dispersão de Etiquetas Eletrônicas, foi motivado pela
necessidade de manter estável o processo de flotação da Usina do Salobo. Foi observado que
conhecer a composição do minério desde o processo de desmonte é importante na estabilização
do processo de flotação e, consequentemente, na qualidade final do produto. A atividade de
rastreabilidade do minério já havia sido realizada por duas metodologias diferentes, contudo
sem sucesso. Neste contexto, foi proposto o desenvolvimento de um dispositivo eletromecânico
para ser acoplado a uma RPA com o objetivo de realizar dispersões tele-operadas que fossem
capazes de auxiliar na atividade de rastreio. O Capı́tulo 3 apresenta o passo a passo deste
desenvolvimento. Ao final deste estudo de caso, validou-se o dispositivo utilizado em ambiente
real atingindo um nı́vel 7 na escala TRL, determinou-se os parâmetros de execução da atividade
(altura de 25 m, distância dos waypoints de 20 m e velocidade de 3 m/s) e solicitou-se um
pedido de patente de invenção para o dispositivo e o método desenvolvido.

O segundo estudo de caso, Investigação em Fotogrametria, foi motivado pela neces-
sidade de adequação às vigentes normas e resoluções ambientais para a exploração de cavernas
e minas subterrâneas. Para tal, é necessária a realização da espeleologia do local de interesse,
a fim de se obter informações a respeito das cavidades, antes de se iniciar quaisquer atividades
de extração. Sabendo que uma das atividades da espeleologia é a modelagem 3D do ambiente,
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viu-se a oportunidade de utilizar robôs móveis na execução da atividade. Neste contexto, foi
proposta a realização de uma investigação quanto à técnica de fotogrametria, a partir de ima-
gens obtidas pelo EspeleoRobô. O Capı́tulo 4 apresenta o passo a passo desta investigação.
Primeiramente, o software AliceVision - Meshroom foi selecionado para este trabalho a par-
tir de uma comparação com outros software. Em seguida, validou-se um fluxo alternativo de
reconstrução 3D, com alterações nas operações de FeatureMatching e StructureFromMotion, e,
também, utilizou-se o recurso Augment Reconstruction. Durante os procedimentos, observou-se
duas particularidades quanto a execução da fotogrametria em ambientes com pouca iluminação:
relação inversamente proporcional entre a rotação do robô e a definição do SfM e a relação dire-
tamente proporcional entre o campo de visão e a qualidade da reconstrução. Por fim, através da
comparação da fotogrametria com outros métodos de reconstrução 3D, foi possı́vel notar que
99,7% dos pontos da nuvem de pontos da fotogrametria apresentam erros inferiores a 50 cm. Es-
tes resultados demonstraram que a fotogrametria pode ser utilizada em ambientes subterrâneos
e pode ser extrapolada a outros locais na mineração, que apresentam menos restrições.

O terceiro estudo de caso, Inspeção Automatizada de Dutos, foi motivado pela ne-
cessidade da realização de inspeção da tubulação de rejeitos da Mina do Salobo, que fica no
interior da Floresta Amazônica. Quaisquer problemas nesta tubulação são capazes de interrom-
per o complexo produtivo por horas e, até mesmo, dias. Atualmente, a atividade de inspeção
é realizada de maneira manual e é limitada por conta dos perigos e da dificuldade de realizá-
la em toda a sua extensão. Neste contexto, foi proposta a utilização do EspeleoRobô para a
realização desta atividade, já que o robô poderia entrar na tubulação e inspecionar trechos mai-
ores. O Capı́tulo 5 apresenta a proposta de um sistema para realizar a detecção automática de
potenciais falhas precoces. Primeiramente, diferentes tipos de redes neurais foram testadas na
detecção, das quais os modelos AlexNet, DenseNet, GoogLeLet, Inception V3, MobileNet V2,
ResNet, ResNeXt, VGG e Wide ResNet apresentaram 100% de acurácia. Em seguida, foi re-
alizada a validação visual dos resultados obtidos através do CAM. Nestes testes, a região com
maior ativação coincidiu com a região do potencial defeito precoce. Na sequência, através de
testes de tempo de execução, validou-se que as redes AlexNet, MobileNet V2 e ResNet apre-
sentaram os menores tempos de processamento. E, para finalizar, foi aplicado o YOLOv3 sobre
as juntas e obteve-se a detecção delas com alto grau de precisão, mAP de 94,4%. Estes resulta-
dos demonstram que é possı́vel desenvolver um sistema automático para suporte à decisões na
inspeções das tubulações.

Os trabalhos futuros são apresentados nos devidos capı́tulos autocontidos. Notadamente,
as sugestões sobre o tema Dispersão de Etiquetas Eletrônicas podem ser vistos na Seção 3.5,
sobre o tema Investigação em Fotogrametria na Seção 4.5, e sobre o tema Inspeção Automa-
tizada de Dutos na Seção 5.5.

78



6.1. Contribuições

Durante o desenvolvimento das pesquisas relacionadas a dissertação, foi possı́vel re-
alizar contribuições para os eixos cientı́ficos, tecnológicos, industriais e sociais, das quais
destacam-se:

6.1.1. Contribuições cientı́ficas

• Publicação de artigo em periódico (co-autoria): Towards semi-autonomous robotic ins-

pection and mapping in confined spaces with the EspeleoRobô no Journal of Intelligent

and Robotic Systems. Resultados deste artigo são parte do Capı́tulo 4;

• Publicação de artigo de conferência e apresentação: Deep Learning for Early Damage

Detection of Tailing Pipes Joints with a Robotic Device no CASE 2020 - International

Conference on Automation Science and Engineering. Resultados desta publicação são
parte do Capı́tulo 5;

• Publicação de artigo de conferência (co-autoria): Visão Computacional e Redes Neurais

Convolucionais aplicadas à Detecção de Vazamentos de Óleo no Congresso Brasileiro de
Automática (CBA) 2020.

• Publicação e apresentação do resumo: Investigation on Photogrammetry and LiDAR

Models for Caves/Mines 3D Reconstruction no Fall Meeting 2019 - AGU (União de
Geofı́sica dos Estados Unidos). Resultados desta publicação são parte do Capı́tulo 4;

6.1.2. Contribuições tecnológicas

• Inventor no pedido de patente da invenção: Dispositivo e método para lançamento de

etiquetas eletrônicas sobre rocha desmontada a partir de um veı́culo aéreo não tripulado.
Resultados deste trabalho são parte do Capı́tulo 3;

• Autoria do relatório técnico: Relatório de experimentos de campo na Mina do Salobo

(2020). Resultados desta publicação são parte do Capı́tulo 3;

• Co-autoria do relatório técnico: Dispositivo robótico para inspeção de ambientes restri-

tos e confinados (2020). Parte dos conhecimentos adquiridos no relatório são utilizados
Capı́tulo 4.

• Co-autoria do relatório técnico: Inspeção da tubulação de rejeitos das usinas de Salobo

(2019). Parte dos conhecimentos adquiridos no relatório são utilizados nos Capı́tulos 4 e 5;
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6.1.3. Contribuições industriais

• Participação em operações de inspeção em Nova Lima e Brumadinho. Inspeções realiza-
das com EspeloRobô de forma teleoperada para captura de vı́deos para análise de estru-
tura de galerias de barragens. Parte dos conhecimentos adquiridos na tarefa são utilizados
no Capı́tulo 4.

• Participação em operação de inspeção em Salobo. Inspeção realizada com o Espeleo-
Robô de forma teleoperada para captura de vı́deos para análise de interior de tubulação
de rejeitos da usina. Parte dos conhecimentos adquiridos nas tarefas são utilizados no
Capı́tulo 5;

• Participação em operação com drone em Salobo. Atividade foi realizada com drone so-
bre materiais detonadas de forma manual e automatizada para validações do dispositivo
lançador de etiquetas eletrônicas. Parte dos conhecimentos adquiridos nas tarefas são
utilizados no Capı́tulo 3;

• Participação em operação com drone no Complexo Mineral de Mariana. Operação com
drone sobre correrias transportadoras para captura de vı́deos termais dos rolos e cor-
reias transportadoras. Parte dos conhecimentos adquiridos na tarefa são utilizados no
Capı́tulo 3;

• Treinamento de Operação de Drones para funcionários do ITV e Vale, abordando os se-
guintes temas: conceitos básicos, equipamentos embarcados, aplicações, legislação bra-
sileira, planejamento e execução de voos manuais e automatizados. Parte dos conheci-
mentos adquiridos na tarefa são utilizados no Capı́tulo 3;

• Treinamento de Técnicas de Reconstrução 3D para turma Vale (Mina de Sossego, Canaã
dos Carajás - PA) sobre aspectos teóricos e práticos para a reconstrução 3D de ambientes.
Parte dos conhecimentos adquiridos na tarefa são utilizados no Capı́tulo 4.

6.1.4. Contribuições sociais

• Reconstrução 3D da Mina du Veloso1 e disponibilização dos resultados aos proprietários
da mina. Esta mina é uma atração turı́stica na cidade de Ouro Preto - Minas Gerais;

• Palestra no Workshop de Sensoriamento Remoto realizado pelo ITV - 2019, com o tema
de Visão Computacional e Técnicas de Reconstrução 3D na Mineração;

• Revisor de artigos e voluntário no 14◦ Simpósio Brasileiro de Automação Inteligente
(SBAI) 2019;

• Revisor de artigos no VIII Simpósio Brasileiro de Sistemas Elétricos (SBSE) 2020.

1https://skfb.ly/6SLSV
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APÊNDICE A: ESTRUTURA
MECÂNICA DO DISPOSITIVO
LANÇADOR DE ETIQUETAS
ELETRÔNICAS RFID
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Figura A1: Principais vistas da estrutura mecânica do dispositivo lançador de etiquetas
eletrônicas RFID.

Fonte: adaptado de acervo ITV.
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APÊNDICE B: FLUXOS DE RECONSTRUÇÕES 3D

Fluxo padrão de reconstrução 3D por AliceVision - Meshroom

Figura B1: Fluxo de reconstrução 3D no software AliceVision - Meshroom.
Fonte: AliceVision (2020).
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Fluxo de reconstrução 3D proposto

Figura B2: Fluxo de reconstrução 3D proposto para minimizar limitações do ambiente.
Fonte: adaptado de AliceVision (2020).
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